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Hyperbolic metamaterial nanoresonators make poor single-photon sources
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We study the optical properties of quantum dipole emitters coupled to hyperbolic metamaterial nanoresonators
using a semianalytical quasinormal mode approach. We show that coupling to metamaterial nanoresonators can
lead to significant Purcell enhancements that are nearly an order of magnitude larger than those of plasmonic
resonators with comparable geometry. However, the associated single-photon output β-factors are extremely low
(around 10%), far smaller than those of comparably sized metallic resonators (70%). Using a quasinormal mode
expansion of the photon Green function, we describe how the low β-factors are due to increased Ohmic quenching
arising from redshifted resonances, larger quality factors, and stronger confinement of light within the metal.
These results explain why hyperbolic metamaterial nanostructures likely make poor choices for single-photon
sources.
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I. INTRODUCTION

Engineered cavity structures allow for tight confinement
of light and the enhancement of its interaction with matter. In
particular, solid-state structures such as photonic crystals [1,2],
slow-light waveguides [3], plasmonic nanostructures [4–6],
and metamaterial resonators [7,8] allow for the enhancement
of the photonic local density of states (LDOS) of embed-
ded quantum emitters, thereby increasing their spontaneous
emission rates via the Purcell effect [9]. Such enhancement
finds application in areas such as molecule sensing [10],
high-resolution imaging [11,12], energy harvesting [13,14],
nonlinear optics [15], and single photons [16].

A relatively new class of optical materials known as
hyperbolic metamaterials (HMMs) offers the possibility of
achieving extreme confinement of light and increased inter-
action with matter over a broad spectral range [17–19]. Such
materials consist of both metal and dielectric parts, and they are
typically described as having an anisotropic dielectric tensor
within an effective medium description. The dielectric tensor
elements ε∥ and ε⊥ (parallel and perpendicular to the axis of
anisotropy, respectively) are of opposite sign, corresponding
to metallic or dielectric properties along different axes. For an
HMM that is anisotropic along the z axis, for example, the
electromagnetic dispersion relation is given by
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where k is the wave vector, ω is the angular frequency, and c is
the speed of light. Since ε∥ and ε⊥ are of opposite sign, surfaces
of constant frequency are hyperbolic, extending to very large
values of k. The resulting momentum mismatch between
HMM and free-space electromagnetic fields results in strong
confinement of light around the structure [20]. Moreover,
the isofrequency dispersion implies that dipole emitters can
couple to a large range of k-states at a single frequency,
thereby increasing the number of possible decay paths and thus
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the spontaneous emission rate [17]. Metamaterial waveguides
have also been shown to provide enhanced Purcell factors and
Lamb shifts through the associated slow light modes [3].

Many applications in HMM and plasmonic nanophotonics
require Purcell enhancements that are radiative in nature
[7,8,17,21–24], and it is often of fundamental importance to
minimize nonradiative metallic losses. The minimization of
such losses is one of the biggest unresolved issues in plasmon-
ics and metamaterial science, limiting nearly every potential
application in these fields [25]. While several works have
sought to mitigate such losses [25–28], the issue remains an
outstanding concern. Despite the importance of analyzing loss
in plasmonic and metamaterial resonators, there has been little
conclusive analysis of the latter. Several theoretical studies
have argued that the Purcell enhancement in simple HMM
slabs is radiative in nature [8,17,24], and some experimental
work [21] has compared radiative and nonradiative decay in
metal and HMM slab structures, but a thorough investigation
of quenching in HMMs has not been performed. The role
of Ohmic damping has been compared in HMM and metal
cavities [29], but energy loss has not. The superior ability of
HMMs to engineer radiative decay has also been questioned
theoretically [30,31]. An analytical description of radiative and
nonradiative decay in HMM and metal resonators is thus of
great interest.

In this work, we study metal and HMM nanoresonators
for application in single-photon emission, providing a repre-
sentative analysis of nonradiative loss in such structures. We
compare the associated spontaneous emission enhancements
and single-photon output β-factors (the probability of emitting
a photon via radiative decay) using a semianalytical Green-
function (GF) approach. We first show that the GF of a
complex, multilayered HMM resonator can be accurately
described in terms of its quasinormal modes (QNMs), the
optical modes for an open dissipative cavity structure [32,33].
We report greatly enhanced spontaneous emission rates in
HMMs (up to an order of magnitude greater than those of
metal resonators with comparable geometry), but surprisingly,
significantly lower β-factors. Using a QNM approach, we
show that this increased quenching is due to a combination
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of redshifted resonances, larger quality factors, and stronger
confinement of light within the metal regions of HMMs. We
conclude that HMM resonators are characterized by greatly
enhanced Purcell factors that are always accompanied by
smaller β-factors, making them poor choices for single-photon
sources and radiative decay engineering.

II. QUASINORMAL MODE GREEN FUNCTION
EXPANSION

The light-matter interactions are rigorously described
in terms of the photon GF. For example, the pro-
jected LDOS enhancement ρ(ra,ω)/ρh(ra,ω) of an na-
polarized emitter at position ra is given by the ratio
Im{na·G(ra,ra; ω)·na}/ Im{na·Gh(ra,ra; ω)·na)} [34], where
G is the GF and h denotes a homogeneous background
medium. Within the weak-coupling regime, the projected
LDOS enhancement represents the Purcell factor. Moreover,
the GF can be used to quantify the nonradiative decay rate
through [5,35]

γ nr(ra,ω) = 2
h̄ωε0

∫

V

Re{j(r)·G∗(r,ra; ω)·da}dr, (2)

where da = dna is the transition dipole of the emitter,
and j(r) = ω Im{ε(r,ω)}G(r,ra; ω)·da is the induced current
density within the scattering geometry.

The GF is known analytically in a few simple cases, but
in general it must be obtained numerically. Full numerical
solutions of Maxwell’s equations can be obtained for a
radiating dipole emitter located at position ra in a given
photonic environment. Using the electric field solution at
general positions r, one can obtain the two space-point GF
G(r,ra; ω), [4,36,37], and therefore the LDOS at the dipole
location [∝ Im{G(ra,ra; ω)}]. Note that one can also obtain the
single-photon output β-factor by calculating the proportion of
the total dipole power that is radiated in the far field. However,
the dipole approach requires another lengthy simulation to
quantify the relevant physics at each new dipole position.
Instead, the GF may be expanded in terms of the QNMs
of the scattering geometry. The QNMs, f̃µ, are the source-
free solution to Maxwell’s equations with open boundary
conditions [38,39], with a discrete set of complex eigenvalues
ω̃µ = ωµ − iγµ, and associated quality factors Q = ωµ/2γµ.
Due to the outgoing boundary conditions, QNMs diverge
(exponentially) in space [38,40], but their norm is still finite,
and can be obtained in a number of complementary ways
[41–44].

Within the resonator of interest [38], the transverse part of
the GF can be written as an expansion of its QNMs through
[39] GT(r,r′; ω) =

∑
µ[ω2/2ω̃µ(ω̃µ − ω)]f̃µ(r)f̃µ(r′). For po-

sitions near metallic resonators (but outside the regime of
quasistatic quenching), the GF can be accurately approximated
by the same expansion [45], with the sum greatly reduced
to the contribution of one or a few dominant modes near
the main cavity resonance [33]. Thus obtaining the dominant
QNMs is usually sufficient for obtaining the GF as a function
of frequency and position around the resonator. The GF and
QNMs can then be used in various quantum optics formalisms
[2,35,46], providing the starting point for an analytical and
rigorous description of light-matter interactions.
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FIG. 1. (a) Schematic of a gold nanodimer resonator. A y-
polarized quantum dipole is shown in the gap center. (b) Schematic of
an HMM dimer with seven layers of gold and six layers of dielectric
(blue). (c) Purcell factor for a y-polarized dipole in the gap center of
a gold nanodimer, obtained with full dipole calculations (red circles)
and a QNM expansion (solid blue). (d) Purcell factor as in (c), but for
an HMM dimer of metal filling fraction fm = 0.2.

III. HYPERBOLIC METAMATERIAL NANODIMERS

For practical fabrication purposes we analyze a paral-
lelepiped nanoscale HMM dimer with seven layers of gold
and six layers of dielectric, anisotropic along the z axis
[Fig. 1(b)], but our general findings below apply to all
HMM geometries that we have tried (see below, as well
as the Appendix). The dimer configuration enhances Purcell
factors in the gap through the bonding effect, and minimizes
nonradiative quenching by drawing fields out of the metal
[47]. The length of each parallelepiped is 95 nm (y axis),
and the width and depth are 35 nm (x and z axes). We fix
the gap size at 20 nm in order to maximize the Purcell factor
while minimizing nonradiative quenching. We set ε = 2.9 for
the dielectric (similar to MgO) and εh = 2.25, and we use a
Drude model for gold, ε(ω) = 1 − ω2

p/[ω(ω + iγ )]. We set the
plasmon frequency ωp = 1.202 × 1016 rad/s and collision rate
γ = 1.245 × 1014 rad/s, with parameters obtained by fitting
experimental data for thin film gold in the frequency regime
of interest [48]. The use of a classical permittivity has been
shown to be valid for material layers as thin as 1 nm [49–53].

We obtain the QNMs around the resonance of interest
for two representative cases: a plasmonic resonator (volume
metal filling fraction fm = 1.0) and an HMM resonator
with large dielectric character (fm = 0.2). Using COMSOL
MULTIPHYSICS [54], we use an iterative frequency-domain pole
search with a dipole excitation [55] to obtain the complex
eigenfrequencies, and the associated modes are normalized
implicitly. We identify a single complex eigenfrequency for
the pure gold dimer, ω̃c/2π = 303.29 − i24.18 THz (Q =
6.3). We obtain a maximum Purcell factor of around 720
at the origin (gap center), in excellent agreement with full
dipole calculations [Fig. 1(c)]. The HMM dimer response is
characterized by three complex eigenfrequencies contributing
to the resonance of interest, ω̃c1/2π = 139.215 − i9.847 THz
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FIG. 2. (a) QNM field profile |f̃y(0,y,z)| for the dominant mode
of a plasmonic dimer. The edges of the dimer are shown in white. (b)
QNM profile for the three dominant modes of an HMM dimer with
filling fraction fm = 0.2, with eigenfrequencies increasing from left
to right. Brighter colors indicate stronger fields.

(Q = 7.1), ω̃c2/2π = 165.335 − i10.412 THz (Q = 7.9), and
ω̃c3/2π = 197.472 − i9.860 THz (Q = 10.0). The three-sum
QNM maximum Purcell factor at the origin is approximately
5600, which is within 5% of the full dipole result of 5900
[Fig. 1(d); the presence of other nearby modes makes the
expansion slightly less accurate than that of the gold dimer—
see Appendix A 4]. The HMM and gold QNM profiles are
shown in Fig. 2. We remark that the dominant contribution
at the origin is from the second QNM, which resembles
a localized plasmonic mode; in contrast, modes 1 and 3
resemble Fabry-Pérot resonances, and they contribute strongly
at other locations. These results suggest that there is little
fundamental difference between plasmonic and HMM modes
in nanoresonators, a conclusion that was similarly made for
slab structures [30].

Clearly the Purcell factors achievable with the HMM are
much higher than those of the pure gold structure (in this case,
by an order of magnitude). However, full dipole calculations
yield an impressive β-factor of up to 72% for the metallic
resonator, but an extremely poor β-factor of 12% for the
HMM. We have found similarly low β-factors for different
geometries and configurations, including HMM waveguides,
and cylindrical nanorods and dimers. We have also found
low β-factors in a spherical HMM cavity, in which Ohmic
damping was found to decrease with reduced filling fractions
[29], and in an HMM slab structure—see Appendix A 1. To
our knowledge, this is the first time that such large losses have
been documented in such a wide variety of HMM resonators,
and our results stand in contrast to current suggestions in the
literature.

IV. QUASINORMAL MODE DESCRIPTION
OF LARGE LOSSES

We argue below that the universally low single-photon
β-factors (quantum efficiencies) associated with HMMs are
attributable to three key factors: (a) HMMs confine light to
their metal regions more strongly than metallic resonators,
(b) HMM modes have higher quality factors than plasmonic
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FIG. 3. QNM field strength, |f̃|2(0,y,0), for the dominant modes
of the plasmonic dimer (solid blue) and HMM dimer (dashed red).
The shaded region corresponds to positions within each resonator,
and specifically to positions within a metal layer of the HMM dimer.
Inset: zoom-in of the mode strength for positions inside the resonator.

modes, and (c) HMM resonances are redshifted to regimes of
higher metallic loss as the metal filling fraction is reduced.
To understand the first two points, we consider Eq. (2) for
the case of a y-polarized dipole at ra . Focusing on a single
QNM of interest, the total decay rate is proportional to
Im{Gyy(ra,ra; ω)} = Im{A(ω)f̃ 2

y (ra)}, where we have defined
A(ω) = ω2/2ω̃c(ω̃c − ω) for the cth QNM, and where we
have withheld the c dependence of the mode for ease of
notation. On the other hand, the nonradiative decay rate
given by Eq. (2) scales with ε′′|A(ω)|2|f̃y(ra)|2

∫
metal |f̃(r)|2dr,

where ε′′ = Im{ε}, and where we have used vertical bars to
indicate both an absolute value and the norm of a vector.
For (Im{f̃ }/Re{f̃ })2 ≪ 1 and Im{f̃ }/Re{f̃ } ≪ Q, both of
which are almost always satisfied in practice, the on-resonance
nonradiative coupling ηnr = γ nr/γ is given by

ηnr ∝ fmε′′Q⟨ |f̃|2⟩metal, (3)

where ⟨ |f̃|2⟩metal =
∫
Vmetal

|f̃(r)|2dr/Vmetal denotes an averag-
ing of the field strength over the metal volume, and we have
used Vmetal ∝ fm to elucidate the scaling of the nonradiative
coupling. Note that the nonradiative decay rate scales with G2,
while the total decay rate scales with G, so that the nonradiative
coupling is increased by an enhancement of Q|f̃|2 within the
metal, even if the product increases at ra as well.

Figure 3 shows the mode strength |f̃(0,y,0)|2 as a function
of distance y along the dimer axis, for both fm = 1.0 and 0.2.
Outside the dimer, the mode strength is nearly identical for both
the metal and the HMM structures, with the only difference
occurring a few nm from the metal surface. Within the dimer,
however, the mode strength of the HMM is significantly
larger than that of the gold resonator. In light of the above
discussion, this suggests a much-reduced β-factor. Evidently,
the HMM is not characterized by a stronger modal field
at all positions, which would simultaneously increase the
Purcell factor while diminishing the β-factor (see Sec. V).
In fact, the enhanced light confinement occurs only within
the structure. We can understand this effect as arising from
the increased quantity of dielectric within the resonator. Since
the dielectric supports the existence of electric fields better
than the metal, the field strength within the structure becomes
stronger as the metal volume is reduced. The field strength
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FIG. 4. Midgap on-resonance Purcell factor (solid blue) and
output β-factor (dashed red) for a y-polarized dipole at the origin for
varying filling fractions. An increase in the Purcell factor is always
accompanied by a reduction in the β-factor.

is enhanced in both dielectric and metal layers, and the latter
effect leads to increased loss (see Appendixes A 2 and A 3 for
more details). Such an explanation suggests that smaller metal
filling fractions are associated with higher loss, which is indeed
observed (Fig. 4). We suggest that this effect is characteristic
of all resonators consisting of metal and dielectric layers, and
it is indeed consistent with all cases we have studied.

The β-factor is further reduced by an increase in quality
factor, QHMM/Qmetal = 1.27, and from the redshifting of the
resonance frequency, since metals with a Drude-like dispersion
are characterized by a loss term ε′′ ∝ 1/ω3. Importantly, this
latter effect balances the reduction in the metal volume, such
that the product fmε′′ appearing in Eq. (3) is equal to 3.16
for the the HMM dimer, and to 2.59 for the gold dimer
(see Appendix A 2). This balancing effect, combined with
increased Q-factors and enhanced light confinement within
the metal, leads to lower β-factors associated with the HMM
dimer.

In light of the above results, we suggest that HMM
resonators make poor single-photon sources, for any Purcell
factor improvement over metal resonators is accompanied by a
reduction in the β-factor (which renders the photon source in-
creasingly nondeterministic). This somewhat surprising result
is expected to be true of all forms of HMM nanoresonators,
given the general form of the explanation given above, and we
have found it to be true in all of the examples we have studied.
Our results also explain why HMM structures can be limited
by nonradiative loss in ways that pure metal structures are
not.

V. COMMENTS

As seen in Fig. 3, the QNM strength of the HMM resonator
is no larger than that of the metal. The increased Q-factor
of the HMM yields a small enhancement in the GF, but the
effect is rather minor. In fact, the superior HMM Purcell factor
is largely due to a decreased resonance frequency. Since the
free-space decay rate of a dipole emitter scales with ω3 [34],
the associated spontaneous emission enhancement is larger
at lower frequencies. Evidently, HMMs may have difficulty
accessing nonperturbative quantum optics effects such as the
strong-coupling regime and vacuum Rabi splitting, which rely
on an enhanced GF [34], unless they can also be accessed

by metals. Indeed, we have found that vacuum Rabi splitting
for a typical quantum dot dipole requires Purcell factors that
are orders of magnitude larger than any of the enhancements
found here. These results are consistent with those obtained
for HMM slab structures [30]. While the strong resonance
redshift associated with decreased filling fractions provides
an opportunity to finely tune to dipole resonances, such tuning
may also be possible by modifying the size of metal resonators
[30].

VI. CONCLUSIONS

We have shown that coupling to HMM nanoresonators can
lead to Purcell enhancements that are much larger than those
of metals with comparable geometries. Surprisingly, however,
we have found that these enhancements are associated with
unusually low β-factors. Using a semianalytical QNM ap-
proach, we have shown that these low β-factors are due to
redshifted resonances, increased quality factors, and stronger
confinement of light within the metal. We conclude that
HMM nanoresonators are likely poor choices for single-photon
sources, as well as for many optical applications requiring
strong radiative coupling.
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APPENDIX

1. Purcell and β-factors for two different HMM structures

To provide additional generality to the results in the main
text, here we present computational results for the Purcell and
β-factors associated with two completely different HMM and
metal structures, and we show that they are consistent with
those of the nanoresonators studied in the main text. We use
a slab structure characterized by a continuum of modes to
show that low β-factors seem to be a general feature of HMM
structures, and they are not limited to HMM nanoresonators
in particular (though we note that the multimode behavior
of slab structures is clearly problematic for single-photon
applications). We also examine the spherical HMM resonator
studied in Ref. [29] to further support the general argu-
ment that HMM nanoresonators make poor single-photon
sources.

First we compare a gold slab with an HMM slab of 50%
metal filling fraction. The width and length of the slab are
one micron (x and y directions), and its height is 150 nm
(z direction). The HMM consists of five layers of gold and
five layers of dielectric, each with a thickness of 15 nm, and
we use the same parameters for the dielectric constants as in
the main text. We calculate the β-factors and Purcell factors
as a function of frequency for a z-polarized dipole located
10 nm from the surface, through a full dipole calculation using
Lumerical finite-difference time-domain (FDTD) simulations
[47,56]. Since we scan a large region of frequency space
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FIG. 5. Comparison of single-photon parameters of a gold slab
and an HMM slab of 50% metal filling fraction. (a) Schematic of an
HMM slab. (b) Purcell factor and β-factor for a vertically polarized
dipole located 10 nm from the gold slab surface. (c) As in (b), but for
an HMM slab of 50% metal filling fraction. For both structures, we see
a clear correspondence between Purcell and β-factors. In particular,
the β-factors are vanishingly small near the main resonances.

without an obvious modal structure, it is more convenient to
use FDTD for these calculations. The FDTD simulations were
performed using a 5 nm mesh within a 2 µm3 computational
domain, excluding the 64 perfectly matched layers (PMLs)
used to simulate the outgoing boundary condition. The results
are shown in Fig. 5. Well below the plasma frequency, the
Purcell factor of the HMM is about double that of the gold
slab, while the β-factor of the gold slab is much higher than
that of the HMM (around 80% versus 40%). There are higher
frequencies for which the HMM Purcell factors are larger, and
others for which the gold Purcell factors are larger. However,
it is important to note that in these ranges, the β-factors of
each are vanishingly small. In all cases, any enhancement in
the Purcell factor is associated with a decrease in the β-factor,
which is in agreement with the conclusion made in the main
text.

It is also important to note that the Purcell factors
obtained here are orders of magnitude smaller than those
of nanoresonator structures. Moreover, it is clear that the
Purcell factors represent contributions from a number of
resonant modes. A typical requirement for an ideal single-
photon source is that dipole emitters couple to a single
mode only, with β- and Purcell factors that are as large as
possible. It would thus be preferable, and likely necessary,
to use nanoresonators in place of slab structures for such
applications. In this context, it is highly desirable to have a
modal picture of the underlying physics, in much the same way
that one typically analyzes microcavity-enabled cavity-QED
effects.

Next we investigate the HMM microsphere studied in
Ref. [29], which supports whispering gallery resonances. For
this structure, we have used COMSOL MULTIPHYSICS, as in
the main text [54]. The COMSOL calculations for both the
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FIG. 6. (a) Schematic of an HMM microsphere. (b) Purcell factor
(solid blue line) and β-factor (dashed red line) as a function of metal
filling fraction for a z-polarized dipole located 10 nm from the outer
surface of the sphere. For the larger Purcell factors achievable inside
the HMM dielectric regions (not shown), the single photon β-factors
are negligible.

cylindrical resonators (studied in the main text) and spherical
geometries (shown here) were performed within a 0.2 µm3

computational domain for all filling fractions. This domain
size included all PML layers. The number of computational
elements used for each structure was different in order to meet
the different geometrical demands. A minimum of 70 000
elements were used for simulations of pure gold structures,
while a maximum of 200 000 elements were used for low
filling fraction HMMs. In addition, 10 layers of PML were
used in all calculations, which were enough to obtain accurate
numerical convergence. The HMM sphere has a radius of
100 nm, and it consists of five layers of silver and five layers
of dielectric; further details can be found in Ref. [29]. We
obtain β-factors and Purcell factors for a z-polarized dipole
located at z = 10 nm from the surface of the sphere, coupling
to the angular momentum l = 2 mode. The results shown in
Fig. 6 mirror those of the resonator studied in the main text:
the Purcell factor increases and the β-factor decreases as the
filling fraction is reduced. These results are consistent with
our general conclusions about nonradiative decay in HMM
resonators. In addition, it was concluded in Ref. [29] that
Ohmic damping decreases as the filling fraction is reduced,
leading to increased quality factors. Evidently this does not
lead to less Ohmic loss, for the β-factor is reduced for smaller
filling fractions. This result is consistent with Eq. (3) in
the main text, which shows that ηnr is actually proportional
to Q.

2. Resonance frequency scaling

In the main text, we argue that the enhanced Purcell
factors in HMM nanoresonators are mainly due to a resonance
frequency redshift. We note that this redshift leads to a larger
loss term through the enhancement of the imaginary part of
the dielectric constant. This enhancement is such that that the
product fmε′′ appearing in Eq. (3) of the main text is actually
increased. Here we further motivate this result with a simple
example.

One can analyze a spherical HMM nanoresonator in
the quasistatic approximation, using an effective medium
description (see Ref. [29] for the form of the model used). For
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a Drude metal and dielectric layers with unit permittivity, the
resonance condition is found to be ω0 = ωp

√
fm/3. Clearly

the resonance frequency is a decreasing function of the metal
filling fraction. Moreover, an application of the Drude formula
shows that the product fmε′′ increases as the filling fraction is
reduced. This is a direct result of the fact that the imaginary
part of ε scales as 1/ω3, while the real part scales as 1/ω2. This
implies that the redshift accompanying the increased Purcell
factor yields an increased loss parameter that is large enough
to balance the decrease in filling fraction. More generally,
one expects that a plasmonic resonance will occur when
a denominator of the form ε + αεh becomes resonant; for
some α that depends on the given configuration. For an
HMM described as an effective medium, the metal component
of the permittivity is given as ε = fmεm + (1 − fm)εd [29].
Satisfying the resonance condition then implies that ω0 is a
decreasing function of fm, and an application of the Drude
formula shows that the product fmε′′ must increase as the
filling fraction is reduced.

3. Quasistatic picture of diminishing HMM β-factors

We follow the approach taken in Ref. [57], which makes
use of a quasistatic approximation, deemed to be valid for
resonators whose dimensions are much smaller than the
resonant wavelength. Such an approach becomes increasingly
well-justified for HMM nanoresonators, as the size of the
resonator remains constant while the resonance frequency is
reduced. In the quasistatic limit, the localized modes of a
resonator are bound by the following relation:

∫

Vm

−ε′
m|F̃(r)|2dr =

∫

Vd

εd (r)|F̃(r)|2dr. (A1)

Here, F̃(r) is a “localized field mode,” ε′ = Re{ε}, Vm is the
metal volume, and Vd is the total dielectric volume (including
the volume of the dielectric component of the resonator). The
localized mode is defined here as [45]

F̃(r) =
∫

Vdimer

Gh(r,r′; ω) · )ε(r′,ω)f̃(r′)dr′ (A2)

outside the dimer structure, and

F̃(r) = f̃(r) (A3)

inside the dimer. Here, Gh(r,r′; ω) is the Green function of the
homogeneous background medium, )ε(r′) is the permittivity
shift within the dimer, and f̃(r′) is the QNM (see the main
text). This localized field mode is essentially a regularized
QNM, which corresponds to the QNM at positions near the
resonator, but it does not diverge in the far field [45].

Invoking the Drude formula for ω ≪ ωp, and using Eq. (2)
of the main text, we obtain the nonradiative decay rate for an
na-polarized dipole emitter at position ra:

γ nr(ra,ω) = 2d2γcol|A(ω)F̃a(ra)|2

h̄ωε0

∫

Vd

εd (r)|F̃(r)|2dr, (A4)
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FIG. 7. (a) Extended view of the Purcell factor associated with the
HMM nanoresonator studied in the main text, as calculated through
full dipole simulations. (b) Purcell factor in the resonant regime of
interest, as calculated through full dipole simulations (red circles) and
an expansion of three QNMs (solid blue).

where γcol is the collision damping rate in the Drude formula.
The on-resonance β-factor is then

β = 1 − Q
γcol

ω

∫

Vd

εd (r)|F̃(r)|2dr. (A5)

We see that the β-factor decreases as the integrated mode
strength over the total dielectric volume increases, and as the
resonance frequency is reduced. This is precisely what we
have observed in HMMs: as the dielectric volume increases,
and the resonance frequency drops, the β-factor decreases.
The physical justification for this effect is the same as the
one given in the main text. The ω−1 prefactor reflects the
fact that lower-frequency regimes are associated with larger
loss, while the integral of the field strength over the dielectric
regions reflects the fact that stronger fields in the dielectric
lead to stronger fields in the metal, and thus to larger losses, as
well.

Note that this behavior is different from that of a plasmonic
resonator of reduced volume. As the volume is reduced
in an ordinary resonator, the resonance frequency becomes
blueshifted. However, the smaller volume of the resonator
leads to enhanced field strengths both inside and outside
the resonator, and thus to larger loss. Both HMM and metal
resonators are limited in their increased Purcell enhancement
by a reduction in the β-factor, but the reasons for each are
subtly different.

4. Multimode behavior of HMM nanoresonators

In the main text, we note that the presence of nearby modes
makes the QNM expansion slightly less accurate for the HMM
resonator, which may seem surprising given the excellent
accuracy of the plasmonic QNM result. For completeness, we
have included an extended view of the HMM Purcell factor
in Fig. 7, as calculated through full dipole simulations. It is
clear that, in addition to the main plasmonic peak near 0.7 eV,
as well as the accompanying Fabry-Pérot resonances, there
are also interfering modes at higher and lower frequencies.
Nevertheless, the three QNM expansion used in the main text
is accurate to within 5% in the region of interest near the main
peak, as seen in Fig. 7(b).
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