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Characteristics of Edge-Emitting
Bragg Reflection Waveguide Lasers
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Abstract—We  demonstrate experimentally the stable
continuous-wave (CW) single-mode operation of Bragg reflection
waveguide (BRW) lasers from 10 to 100 °C. The threshold
characteristics, quantum efficiency, gain, and self-heating
characteristics are investigated in detail. Threefold enhancement
in the optical confinement is achieved using these BRW
structures for a core width two times that of their edge-emitting
total internal reflection counterparts. The device shows also the
high gain and characteristic temperature (~197 K) under CW
operation from 10 to 100 °C. The mode stability is analyzed
by the calculated mode reflection spectrum, injection-current-
dependent lasing spectrum, and near-field patterns.

Index Terms— Anti-guided lasers, Bragg reflection waveguides,
high-power lasers, semiconductor lasers, threshold.

I. INTRODUCTION

DGE-EMITTING Bragg reflection waveguide (BRW)

lasers are essentially 1-D photonic bandgap (PBG)
p-i-n structures, where light is guided by Bragg reflectors
with light propagating parallel to the epi-layers [1], [2]. They
have recently attracted much attention due to their unique
merits, in particular structures where the core is the layer
of the lowest refractive index in the structure. In such a
configuration, vertical guiding based solely on bandgap effects
can be achieved, enabling large core dimensions, while main-
taining single-mode operation. Other predicted advantages
include large mode volumes [3], [4], high gain coefficient [5],
and strong mode discrimination, allowing stable single-mode
operation [4], [6], [7]. Moreover, the most significant
advantage of this class of lasers is their compatibility with
waveguide structures with capabilities of efficiently phase-
matching second-order nonlinearities within the laser cavity
[8], [9]. This novel capability can enable unique applications
related to nonlinear frequency conversion [10], [11] and opto-
electronic integrated circuits, such as monolithic electrically
injected optical parametric oscillators (OPOs) and compact
spontaneous parametric down-conversion single-photon and
entangled-pair sources. In these devices, the BRW structures
can be used as both the pump laser and the nonlinear
waveguide.
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From a structural standpoint, BRW lasers can be viewed
as a hybrid between conventional total internal reflection
(TIR) edge emitters and vertical-cavity surface-emitting lasers
(VCSELs). Hence, these lasers can potentially capitalize on
the benefits of both classes. BRW lasers can be designed to
achieve the mode selection offered by VCSELs and the high
output power performance offered by large-optical-cavity TIR
lasers. BRW lasers can also be extended to two dimensions by
fabricating periodic structures along the lateral direction [5].
Excessive scattering losses due to fabrication imperfections
may limit the benefits from extending this approach to two
dimensions, though.

Many promising applications of BRW lasers are based on
these structures as being part of a high-power single-mode
device. However, BRW laser structures pose challenges for
high-power operation due to the thick epitaxial layers, which
require challenging thermal management. In turn, significant
optimization and hence laser performance characterization is
necessary. Recently, we have demonstrated the first double-
sided 1-D BRW edge-emitting laser (EEL) [12], which shows
the single transverse mode operation with low threshold
current density. In this paper, we investigate in detail the
threshold, mode confinement, gain, and self-heating character-
istics of this new class of lasers under continuous-wave (CW)
operation. In addition, performance optimization of this class
of lasers is discussed. The paper is organized as follows. In
Section II, the design principles and mode selection of BRW
lasers are summarized. In Section III, the threshold character-
istics, modal and gain characteristics, as well as self-heating
characteristics of BRW lasers are presented. Conclusions are
summarized in Section IV.

II. LASER DESIGN AND FABRICATION

As shown in Fig. 1(a), the BRW laser consists of a
low-index core layer placed between two distributed Bragg
reflectors. Each Bragg reflector is made up of mutilayer stacks
of alternating materials with refractive indices ny,, n;(n, > n;)
and thicknesses dj,, d;, respectively. The index of the core layer
is nc(np > n; > n.) and thickness is d.. The low-index core
layer can ensure that the devices operate at the BRW mode
and not the TIR mode. The gain is provided from quantum
wells (QWSs), which are located at the center of the core layer.
Fig. 1(b) shows the light transmission in the BRW laser. The
angle of incidence 6. covers a range from 0 to /2, and can
be expressed as [2]

Reff = N Sin O, (1)
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Fig. 1. (a) Schematic diagram of the BRW laser structure and (b) light
transmission in the BRW laser.

where n.yr is the effective index of guide mode. If the Bragg
reflectors provide quarter-wave optical thickness, then the n.r¢
is given by [1]

Neff = \/n% —[@m—1DAj2d. 2, (m=1,2..) ()

where m is an integer that corresponds to the mode order and
hence the number of peaks in the z direction. 1 is the wave-
length of the BRW mode. We select Aly3GaAsy7As/GaAs
(n;/ny, = 3.34/3.512) as the materials for the Bragg reflectors
and Alp37GaAspe3As as the core layer (n. = 3.304) with
a thickness of 700 nm. This renders the effective refractive
indices n.ry of fundamental mode (m = 1) and first higher
order mode (m = 2) to be 3.2 and 2.6, respectively. The corre-
sponding incidence angles 6, are 78.2° and 52.1°, respectively.
There are no transverse modes with m > 2 in this BRW laser.
The thicknesses of the Bragg reflectors can be calculated by
the condition of quarter-wave BRW

iy npy = nopp = 414, ©)

The equation dictates the thicknesses of GaAs and
Alg3GaAsp7As to be 167 and 281 nm, respectively. To
examine the mode confinement, the transverse electric mode
reflectivities of the structure with eight pairs of quarter-
wave Alp3GaAsy7As/GaAs Bragg reflectors were calculated
by using the transfer-matrix method [13], which are shown
in Fig. 2. It can be seen that the mode reflectivity of the
fundamental transverse mode (m = 1) is nearly 100% at the
gain wavelength of the InGaAs QWs (~ 980 nm). However,
the corresponding reflectivity of first high-order transverse
mode (m = 2) is only 20%. Therefore, these structures show
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Fig. 2. Mode reflectivities of the fundamental transverse mode (m = 1) and
the first high order mode (m = 2) along the z direction.

strong transverse mode selection, which assists stable single
transverse-mode operation.

The laser structure was grown on (100)-oriented, n™ GaAs
substrate by metal-organic chemical vapor deposition. Two
6-nm Ing»Gap gAs QWs separated by 2-nm GaAs were grown
at the center of the Alg37Gage3As low-index core layer.
The upper and lower mirrors consisted of eight pairs of
Alp3Gagp7As/GaAs quarter-wave layers. The upper mirror
was doped with carbon at 5 x 10'7 cm™> for the first
three periods and then 10'® cm™ for the final five periods.
The lower mirror was doped with Si at 1.2 x 107 cm™3
for the first three periods and then 1.2 x 10'® ¢cm™3 for
the final five periods. The interfaces between GaAs and
Alp3GaAsp7As were linearly graded in composition over
25 nm to reduce the electrical resistance. The total thickness
of epi-layer was about 8.5 um.

The samples were patterned into ridge waveguide lasers
with ridge widths of 3.2 um by dry etching. Insulation
using SiO, and metallization defined the p-side contact. The
etching depth was ~ 3.6 um. The samples were cleaved
into laser bars and mounted on copper heat sinks with
p-side up for measurement without any facet passivation or
coating. The temperature of the heat sink was controlled with
a thermoelectric cooler. A 7-mm diameter silicon photodiode
and an Agilent 86146B optical spectrum analyzer were used to
measure the output power and the lasing spectra, respectively.

III. RESULTS AND DISCUSSION
A. Threshold Characteristics

Fig. 3 shows the CW temperature-dependent power—current
(L-I) curves of a representative laser. The cavity length of
the device is 0.51 mm. The threshold current I;; is 12.6 mA
at 10 °C, i.e., the threshold current density is ~ 772 Alecm?,
and increases to 20.5 mA at 100 °C, which is approximately
88 1 A/°C. The y-axis on the right in Fig. 3 shows the voltage—
current curve measured at 20 °C. The threshold voltage is
~ 2.6-V. The high threshold voltage can be attributed to
the high series resistance at heterostructure interfaces of the
Bragg stack, which can be further optimized for low resistance
performance. This can be achieved using standard techniques
such as modulation doping [14] or superlattice structures [15].
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Fig. 3. CW L-I-V (10-100 °C) characteristics of a BRW laser.
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Fig. 4. Temperature dependence of threshold current density (solid squares)
and external differential quantum efficiency (hollow squares). The solid lines
are the theoretical fits to the data.

Fig. 4 shows the temperature-dependent threshold current
(solid squares) and external quantum efficiency 7, (hollow
squares). The solid lines are the curve-fitting of the results.
For the threshold current (solid squares), the fitting is based on
the equation Iy, = Ipexp(T/Tp), where Tp is the characteristic
temperature, which was found to be 197 K in the temperature
range from 10 to 100 °C. The external differential quantum
efficiency of the BRW laser is 0.4 at 10 °C and reduces to 0.31
when the temperature increases to 100 °C. To better understand
the temperature behavior of the quantum efficiency, further
analysis was carried out. The external differential quantum
efficiency can be described by the well-known equation 7y =
niom/(a; + an), where #;, a;, and a,, are the internal quantum
efficiency, internal loss, and mirror loss, respectively. The
internal quantum efficiency of InGaAs QW lasers at threshold
can be expressed as [16]

ni = [1+tb—w +tb—wtﬂi|_1
Iy lewb b

where fp,, is the carrier transport time from the doped AlGaAs
cladding layer to the QW, and is in the order of picoseconds.
Also, t.,p 1s the carrier escape time from the QW to the
barrier [17]. In addition, #; and t,, are the carrier recombination
lifetimes in the barrier and the QW, respectively. In general,
tp, and t, are in the order of nanoseconds and depend on
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Fig. 5. CW lasing spectra of the BRW laser measured at 10 and 100 °C.

the current density. Here, it is assumed that #;, and f,, have
weak temperature dependence at threshold due to the low
temperature sensitivity of the threshold current. Meanwhile,
for these calculations, we ignore the temperature dependence
of both the internal loss and the mirror loss at threshold. From
the definition of 75, and t.,p [16], [17], the temperature-
dependent external quantum efficiency 7,4 can be expressed as

)

where a, b are the temperature-independent constants, and kp,
T are the Boltzmann constant and temperature, respectively.
Also, Ej, is the effective confinement of the barrier. The
term of aT1! can be ignored because #5,, < fp. From the
fitting, the internal loss a; is found to be ~ 34.2 cm~! and
Ep ~0.152 eV. The high loss might be due to the scattering
loss of the rough sidewall and narrow ridge formed during
fabrication by dry etching [18].

ny' =1+ai/am +aT"! +bT"® exp(—Ep/kpT)

B. Mode and Gain Characteristics

The lasing spectra at different injection currents were
measured and are plotted in Fig. 5. Single-mode lasing was
achieved at 10 and 100 °C with the side mode suppression
ratios of 30 and 23 dB, respectively. The lasing wavelength
exhibits a red shift with increase in injection current, which is
7.1 nm at 10 °C for an injection current of 50 mA. Fig. 6 shows
the near-field profiles measured at different injection currents.
By comparing the profiles shown in Fig. 6 with the calculated
near-field patterns for BRW [12], and the unique two lobes
of far-field distribution [Fig. 6(e)], it can be concluded that
the BRW lasers studied here lase in the BRW mode. It is
notable that the near field does not undergo significant change
as the current increases, confirming the selectivity of the
BRW modes, as discussed in the previous section. Achieving
lasing in the BRW mode enables access to laser structures
where both pump lasers and second-order nonlinearities can be
combined in the same cavity, where phase matching is readily
available.

The sub-threshold emission spectra [inset in Fig. 7(a)] were
measured from 10 to 50 °C and used to extract the net peak
modal gain by using the Hakki—Paoli method [19], and are
plotted in Fig. 7(a). The modal gain at 10 °C shows the highest
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Fig. 6. Near-field profile of the BRW mode measured at 10 °C with the

injection current of (a) 20 mA, (b) 30 mA, (c) 40 mA, and (d) 50 mA.
(e) Far-field profile measured at room temperature with an injection current
of 30 mA.

slope for the dependence on the current. With increase in
temperature, the slopes of gain reduce and tend to plateau
[Fig. 7(b)]. The core of BRW lasers can be designed several
times thicker than conventional EELs while maintaining single
mode action. For example, the BRW structure described here
is approximately two times thicker than those of conventional
EEL lasers while operating in single mode, as can be seen
in Fig. 5. In general, a thicker core leads to significant
reduction in the optical confinement factor (OCF) because
OCF is proportional to the ratio of the QW thickness and
active region thickness in the conventional TIR EEL QW
lasers. So the modal gain, which is proportional to the OCF,
should be low for a large-core EEL QW laser. While this
holds true for TIR EEL lasers, the measured modal gain
shown in Fig. 7(a) for the BRW lasers studied here is much
higher than that of the typical InGaAs EEL [20]. This can
be ascribed to the enhanced light confinement due to the
nature of the BRW mode confinement. Theoretical calculation
conducted using the mode solver software (Lumerical MODE
Solutions) shows that the OCF of the BRW laser is about
5.37%, which is about three times larger than that of TIR EEL
with the same active region thickness (~1.7%). This property
of BRW structures represents a valuable design tool and will
be explored further.

C. Self-Heating Characteristics

The lasing wavelength shift shown in Fig. 5 can be
attributed to the carrier-induced bandgap shrinkage [21] and
the thermally induced emission wavelength shift. The former
can be obtained by the sub-threshold emission spectra at low
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Fig. 7. (a) Modal gain vs. current at different temperatures, measured from
the emission spectrum by using the Hakki—Paoli method. The inset is the
typical high-resolution laser spectrum of a BRW laser measured at 10 °C
with injection current of 12 mA (0.951;). (b) Differential gain as a function
of temperature.

injection currents, where the temperature variation due to self-
heating can be ignored. The results are plotted in Fig. 8 as
hollow squares, which show a linear current dependence of
0.014 nm/mA. The temperature dependence of the lasing mode
is obtained by changing the heat sink temperature. Note that
all the above measurements are focused on the same lasing
longitudinal mode. As shown in Fig. 8, the thermally induced
emission wavelength shift (solid squares) shows a nearly linear
dependence of 0.142 nm/°C. By using the wavelength shift
both due to carrier injection and to temperature change, we
can estimate the temperature increase AT in the active region
of the device according to the lasing spectrum shown in Fig. 5.
The results are shown in Fig. 9. From the figure, the temper-
ature increase is found to be 45 °C at an injection current of
50 mA with a dissipated power of 168.5 mW as extracted from
Fig. 3. This leads to a thermal impedance of ~270 K/W. To
ensure that this method of obtaining the temperature change in
the cavity is valid, we fitted the results with the conventional
empirical equation [22] AT = c1I + 21 2 where ¢; and ¢
are constants and / the injection current. The solid line in
Fig. 9 represents the best fit using this equation. The fit agrees
well with the measured data using our technique. Comparing
this result with the self-heating parameter in the typical QW
EEL (~ 100 K/W) [23] and VCSELs (~ 1788 K/W) [22],
it is found that the self-heating effect in the BRW laser is
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Fig. 9. Temperature increase (AT) in the active region of BRW lasers due
to the self-heating.

higher than that in the typical EEL but much lower than in
VCSELs. This is reasonable because BRW lasers are similar to
VCSELs in their vertical structure, while their cavity volumes
are similar to EELs. Structure optimization is expected to
further reduce the thermal impedance of BRW lasers.

The square data points are obtained using the wavelength
shift due to carrier injection and the wavelength shift due
to temperature change. The solid line is the best fit by the
empirical equation AT = c11 4 c21? [22].

IV. CONCLUSION

We have studied the threshold characteristics, quantum
efficiency, modal gain, and self-heating of a double-sided
BRW laser. Optical confinement enhancement of three times
that of an equivalent edge-emitting laser based on TIR was
demonstrated in this BRW laser structure. This paper suggests
that the BRW laser can achieve stable single transverse mode
operation even at high temperature (~100 °C) with high Ty
(~197 K). We believe that these results will contribute to the
optimization of BRW lasers and hence the development of
compact OPOs and entangled photon sources.
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