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Abstract:  A novel design to achieve phase matching between modes of a 
vertical distributed Bragg reflector waveguide and those of a conventional 
total internal reflection waveguide is reported for the first time. The device 
design and structure lend themselves to monolithic integration with active 
devices using well developed photonic fabrication technologies. Due to the 
lack of any modulation of the optical properties in the direction of 
propagation, the device promises very low insertion loss. This property 
together with the large overlap integral between the interacting fields 
dramatically enhances the conversion efficiency. The phase matching 
bandwidth, tunability and dimensions of these structures make them 
excellent contenders to harness optical nonlinearities in compact, low 
insertion loss monolithically integrable devices. 
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1. Introduction 

Optical parametric oscillators (OPOs) have become indispensable coherent sources for the 
mid infra red. Their operating wavelength span is limited by the transparency window of 
lithium niobate however, because periodically poled lithium niobate (PPLN) is the most 
commonly used nonlinear element in OPOs. Compound semiconductors such as GaAs, in 
contrast, exhibit higher nonlinear coefficients near the material resonances in comparison to 
PPLN, and have a large transparency window. In the case of GaAs the transparency window 
spans the spectral range 1-17 μm. GaAs also has high optical damage threshold and a mature 
fabrication technology for making waveguides in comparison to PPLN. Therefore, achieving 
parametric oscillation in semiconductors monolithically can vastly improve the efficiency of 
this class of coherent sources [1]. More importantly, the potential for monolithically 
integrating these nonlinear elements with active sources to form an OPO chip is an attractive 
option for numerous applications. A coherent source in this form factor is bound to redefine 
how coherent sources are used due to its versatility, ruggedness, and compactness [2]. It is 
clear, however, that achieving efficient, low loss and tunable phase matching in a 
semiconductor material is pivotal for the realization of the monolithic OPOs discussed. 

Although semiconductors possess large nonlinearities, they also have large dispersion, 
particularly at wavelengths close to their bandgap. This makes the problems of phase 
matching challenging in such material systems. In order to phase match the two interacting 
waves, their wave vectors must obey the relation k2ω = 2kω which leads to the condition that 
requires the effective indices of both waves to be equal in order for perfect phase matching to 
occur, namely n2ω = nω. The difficulty of achieving this in semiconductors is usually most 
severe while operating near the bandgap resonances where dispersion prevents such condition 
from naturally taking place. Various means have been devised to overcome this problem; 
form birefringence [3], quasi-phase matching [4], high Q resonant cavities [5] and photonic 
bandgap structures were all studied [6]. On one hand, these solutions produce a route to phase 
matching; however, they provide devices that are difficult to integrate with other active and 
passive photonic components. One of these approaches, which uses quasi-phase matching, 
lends itself to monolithic integration. However, so far it provides imperfect quasi-phase 
matching which makes the attainable effective nonlinearity too low to be of practical use [4]. 
Another very promising demonstration of quasi-phase matching in semiconductors relies on 
inverting the domain of the nonlinearity by growing the semiconductor with different 
orientations, and hence perfect quasi-phase matching has been reported [1]. Monolithic 
integration using this technique is yet to be demonstrated though, and is likely to prove 
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challenging as the technique involves etch and re-growth steps to invert the domain of the 
nonlinearity in the semiconductor and hence adding AlGaAs is at best challenging. 
Operational table-top OPOs were demonstrated using these materials nonetheless [7]. From 
the aforementioned overview it is clear that a means of phase matching, which has low 
insertion loss, large nonlinear coefficient, and can be readily integrable with mainstream 
photonic devices using the available technologies is yet to be found. 

In this work we present a simple means to achieve phase matching in compound 
semiconductor heterostructures through the use of novel waveguide design [8]. In this work 
phase matching is theoretically demonstrated through second harmonic generation (SHG) 
using a TE-polarized pump at 1550 nm wavelength which produces a TM-polarized SH 
radiation at 775 nm. Parametric conversion can also be demonstrated using the same structure 
by launching a TM-polarized SH at 775 nm; TE-polarized parametric florescence can then be 
obtained at 1550 nm.  

The paper is organized as follows; in Section 2 the properties of Bragg reflection 
waveguides (BRWs) will first be discussed, then a demonstration of how these waveguides 
provide a propagation constant lower than that of the constituent waveguide materials will be 
presented. In Section 3, the mathematical formulation that describes the wave propagation in 
BRWs will be given, then in Section 4 the waveguiding condition for a BRW will be solved 
simultaneously  with that describing waveguiding in conventional total internal reflection 
(TIR) waveguides, to obtain a structure that satisfies the condition n2ω = nω. A discussion of 
this technique will be presented in Section 5 followed by a study of the tuning behavior in 
Section 6. 

2. Features of Bragg reflection waveguides 

The BRWs operates by providing reflection for one of the guided waves involved in the SHG 
process described above using stacks of periodic or quasi periodic layers on both sides of the 
core, as can be seen in Fig. 1. These waveguides have attracted substantial interest since their 
initial analysis [9]. Their interesting birefringence properties [10,11] were utilized to produce 
devices such as polarization splitters/combiners [12] while their versatile waveguiding 
properties were used to tailor the profile of their guided modes [13]. BRWs are also attractive 
for nonlinear propagation, where spatial optical solitons have been studied [14], and nonlinear 
optical modes have been found to propagate at higher optical powers in waveguides that have 
no bound modes in the linear regime [15].  

One attractive feature in BRWs is their ability to provide lossless bound modes with modal 
effective indices that are much lower than the material indices of the waveguide material 
constituents, [9] when compared to the effective indices obtained for conventional TIR 
modes. This feature is utilized in our work to provide phase matching for a SHG process. This 
feature can be appreciated when the TIR and BRW mode indices of the same structure are 
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Fig. 1. A schematic diagram of a BRW with the propagation direction 
orthogonal to the Bragg stack. 
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Fig. 2. Plot of the refractive index dispersion of a BRW similar to that 
shown in Fig. 1. The waveguide structure that resulted in this dispersion 
curve is a 200 nm core (nc) of Al0.24G0.76aAs, sandwiched in a Bragg stack 
made of alternating layers of Al0.3G0.7aAs and Al0.5G0.5aAs (n1  and n2). 

 

investigated on the same graph along with the material refractive indices of the structure. In 
Fig. 2 we chose a structure with core refractive index higher than both claddings, in order to 
provide conventional TIR. The waveguide structure that results in this dispersion curve is a 
200 nm core of Al0.24G0.76aAs, sandwiched in a Bragg stack made of alternating layers of 
Al0.3G0.7aAs and Al0.5G0.5aAs.  As can be expected, the zero-order TIR modal index is lower 
than that of the core index by a factor of 2 %. In contrast, when the BRW mode of the same 
waveguide is examined, it is easy to observe that at any given wavelength, its effective index 
is lower than the core index and those of the cladding by at least 12 %. This property can then 
result in the BRW mode index, at a wavelength close to the core material bandgap, being 
equal to that of the zero-order TIR mode, at a wavelength further away than the material 
bandgap, as can be seen in Fig. 2. This property of BRWs has been observed previously and is 
documented but has not been used for the purpose of phase matching, to the best of our 
knowledge. Such waveguides can hence be used to provide guiding for the SH wavelength. It 
is worth noting that we have studied the material dispersion in this optical system 
experimentally using recent grating assisted measurements which lead to improved resolution 
to the existing measurements, and hence we have a reasonable handle on the refractive index 
values within this operating regime [16]. In the next section we shall present the waveguiding 
condition for BR waveguides.  

3. Waveguiding condition for Bragg reflection waveguides 

Assuming invariance in the y direction, the electric field propagating in the waveguide seen in 
Fig. 1 can be written as, 
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where β is the wave vector in the direction of propagation, K is the Bloch wave vector in the 
periodic claddings, kc is the wave vector in the core guiding layer, dc is the core thickness and 
ω is the angular frequency of the wave at the operating wavelength. EK(x) is periodic with 
period Λ, where Λ is the period of the cladding and is equal to Λ=d1 + d2, while d1 and d2 are 
the widths of both layers in the cladding stacks. The constants C1 and C2 are zero for odd and 
even modes respectively. The propagation coefficients are related such that, 
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Where kx is the wave vector in the waveguide transverse direction.  
For second order nonlinear optics applications the overlap between the intensity of the 

fundamental and the field of the SH determines the efficiency of the interaction. Therefore 
this overlap needs to be a controllable parameter which can be optimized in order to provide 
efficient interactions. One simple means to maximize the overlap is to maximize the overlap 
of both modes in the core layer, which will be discussed in more detail in the forthcoming 
section. To achieve this goal using the minimum number of cladding layers, we shall use 
quarter-wavelength stacks [9,10]. Quarter-wavelength stacks help simplify the analysis as it 
keeps the formulae in a closed analytical form. These solutions also provide the highest 
confinement within the core by providing the largest exponential decay coefficient for the 
modal profiles within the claddings. This property dictates that, 
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where k1x, k2x are the transverse wave vectors in both stack layers. In the special case of 
quarter-wavelength stack, the waveguiding condition then becomes [9,10], 
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This condition is obtained through matching the field and its derivative (∂/∂x) at the interfaces 
of the core with both claddings to satisfy the necessary guiding condition for a bound mode. 
By designing the structure using quarter-wavelength stacks in the claddings we ensure that we 
operate right at the center of the stop band of the Bragg stack. This Bloch wave vector K is in 
the form, 

                                                     ..2,1          , =±
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= mi
m
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The imaginary component iκ determines the exponential decay/growth of the BR mode 

envelope into the claddings, and will be at a maximum in the center of the forbidden gap with 
a sign appropriate for field decay, which is described as follows for the quarter-wavelength 
claddings [17], 
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From this equation it can be seen that the ratio of the stack refractive indices can be 
utilized to maximise the intensity of the BR mode in the core. The versatility in the design of 
propagation constant β, group velocity dispersion, and mode shapes afforded by BRWs is 
substantial. The mode shapes of these waveguides have also been studied recently [13].  In 
this work we shall restrict the discussion to the analysis of the quarter-wavelength cladding 
stacks as it is ideally suited for the design problem studied and as they also simplify the 
analysis of the structure, by avoiding numerical techniques for solution. In the analysis 
presented here the BRW modal index is assumed to provide real wave vectors for the mode 
throughout all the layers. Other operating regimes where this condition does not apply are also 
of interest but will be analyzed elsewhere.  

A question may arise about how we define the thicknesses of the cladding layers d1 and d2 
prior to the design. In our case of quarter-wavelength claddings both thicknesses are defined 
as per Eq. (3), and hence can be expressed as a function of the propagation constant and the 
wave vector of their respective layer. This enables their determination after solving for the 
propagation constantβ. Therefore there is no need for prior knowledge of d1 and d2 when 
using the method described here since we inherently set their contribution (kidi) to be π/2. In 
the section that follows we shall simultaneously solve the waveguiding condition of both the 
TIR and BRW modes for a given waveguides in order to fulfill the condition n2ω = nω. 

4. Simultaneously solving for TIR and BRW waveguiding conditions 

The BRW is used to compensate for the large difference in the propagation constant of the 
fundamental and SH waves (@ 775 nm) due to material dispersion by providing a guided 
mode at the SH. Henceforth a TIR waveguide for the fundamental wave (@ 1550 nm) needs 
to be designed in the structure. For this purpose we use a core of higher refractive index to 
provide TIR waveguiding @ 1550 nm. Owing to the one dimensional nature of the problem at 
hand and the stratified periodic medium, the fundamental mode can therefore be easily 
analysed using the field transfer matrix method [18]. The technique is very well documented 
else where and is based on constructing a transfer matrix for the layer stack, which accounts 
for the phase accumulated in every layer [18], 
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The initial layer matrices Mj are defined as, 
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Fig. 3. A graphical example of the solution of both the TIR and BR modes.  
The waveguide structure that resulted in this dispersion curve is a 310 nm 
core of 30% AlGaAs, sandwiched in a Bragg stack made of alternating 
quarter wave layers of 20% and 40% AlGaAs. 
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where c, µo, εo, neff, dj, nj, kjx are the speed of light, vacuum permeability, vacuum permittivity, 
effective modal index, thickness, refractive index and propagation constant in x direction of 
layer j respectively. The modal dispersion function can be written as, 

                                         ,)( 22211211 mmmmn sscceffM γγγγχ +++=   (12) 

where γc and γs are the γ parameter for the top cladding and substrate of the layers 
respectively. For lossless bound modes the modal dispersion function is imaginary [18]. 

Therefore to obtain the zero-order fundamental mode at 1550 nm 0)( =effM nχ  is solved for 

the structure studied. However in order to preserve self consistency, )( effM nχ needs to be 

solved simultaneously with Eq. (5) to obtain the SH and fundamental modes with an identical 
propagation constant. For demonstration, the solutions from both Eq. are plotted graphically 
and the intersection point represents the solution as shown in Fig. 3 for the device parameters 
discussed below.  

The core is made of Al0.3G0.7aAs layer, while the quarter-wavelength Bragg stacks on 
either side are made of alternating Al0.2G0.8aAs and Al0.4G0.6aAs. For demonstration purposes 
both Eqs. (5) and (13) are solved and presented here graphically. As can be seen in Fig. 3, the 
propagation constant of both modes match at a core thickness of 310 nm. The respective 
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modes are then calculated and plotted, as shown in Fig. 4, where the 45% of the TE mode of 
the fundamental at 1550 nm is spatially centered in the core of the structure overlapping with 
23 % of the SH field which is the TM BR mode at 775 nm. The effective index of these 
guides coincided at a value of 3.2236 for this structure. 

5. Discussion 

As can be seen from the field profiles in Fig. 4, the spatial mode overlap of the interacted 
intensities is considerable, which is not always the case for some of the other phase matching 
techniques. However the conversion efficiency between the modes depends on the spatial 
overlap between the induced dielectric polarization at 2ω, P2ω(x) = ε0d(x)[Eω(x)]2, and the 
field of SH mode, E2ω(x), where d(x) is the effective nonlinear coefficient [19]. This implies 
that the conversion efficiency is reduced due to the regions within the cladding where E2ω(x) 
goes out of phase from [Eω(x)]2. One intuitive route to maximize the fields’ overlap is to 
maximize the core confinement. In this case the confinement is ~ 45 % and that of the SH is ~ 
23 %, which is considerable for an initial design without exhaustive optimization. However it 
is imperative to take into account that the case presented here is generic, without a thorough 
optimization procedure for mere proof of principle. BRWs provide extensive degrees of 
design freedom to control the field decay in the cladding, modal shapes, overlap and 
dispersion. Hence they hold tremendous potential for maximizing the overlap and hence the 
conversion efficiency. For the case studied here the conversion efficiency is comparable to 
those of modal phase matching [19].  

The design presented here is in principle a mode matching technique. However it differs 
from previously reported methods [20,21] in that the modal properties of both modes offer an 
extra degree of freedom for optimisation. The BRW and TIR modes used here can be 
optimized more independently using the degrees of freedom afforded by the quarter-
wavelength BRWs. For example, the quarter-wavelength stacks used here can be of any 
AlGaAs composition provided that the π/2 phase shift condition in Eq. (3) is fulfilled, which 
allows tailoring the confinement of the TIR mode with minimal influence on the BRW mode 
properties. Some limitations will still apply nonetheless, as the propagation constant cannot be 
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Fig. 4. Field profiles of both the TE-polarized TIR mode @ 1550 nm and 
the TM-polarized BRW mode at 775nm. 
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increased indefinitely for example, to avoid evanescent fields in the cladding, and the 
resulting excessive losses. Some of the reported techniques involve coupling between the 
fundamental and higher order modes, which limit the spatial overlap and hence the conversion 
efficiency of these techniques [20]. The challenge there is to maximize the overlap integral 
between the interacting waves. Another technique relies on coupled waveguides [21]. Such 
coupled waveguides were reported to have potential conversion efficiency of 100%. Practical 
implementation may suffer from excess losses due to the fabrication tolerances of the coupler. 
In contrast the technique presented here is implemented in a single waveguide defined by 
Bragg stacks which has been studied extensively and shown to have extremely low loss from 
work on vertical cavity surface emitting lasers [22]. In addition the waveguides presented here 
offer ample room for optimizing the overlap integral between the interacting waves. A 
comparison with PPLN is not possible simply because PPLN is inherently less efficient by 
virtue of being a quasi-phase matching technique, in contrast to the exact phase matching 
proposed here. In addition, the nonlinear coefficient for GaAs is ≈1 order of magnitude larger 
than the effective coefficient of PPLN. Gain through carrier injection, fast precise carrier 
tuning and fabrication technologies are all factors that render a semiconductor-based nonlinear 
device to be favourable, even if the efficiency is comparable to that of PPLN. 

The technique discussed here uses type-I phase matching which couples a TE-polarized 
pump at the fundamental wavelength with a TM-polarized wave at the SH. This type has been 
demonstrated using other modal phase matching techniques before [3] as well as quasi phase 
matching techniques [4]. Another possible configuration for our structure is type-II phase 
matching which couples a mixed TE-TM-polarized wave at the fundamental with a TE-
polarized SH. Again this type follows identical principles to what we have discussed in this 
work. It has been demonstrated using a different modal phase matching technique recently 
[20]. As such, if there is any other mode within the structure we study here to which there can 
be power transfer from the fundamental, it needs to be TM-polarized due to the type-I phase 
matching used. The waveguide was designed such that the only guided TIR mode at the SH is 
the zero-order TE-polarized mode, hence no coupling is likely to occur. Moreover, BRWs 
have also been known to support interface modes. These modes are however loosely bound, 
and more importantly they concentrate the energy around the interfaces of the core with the 
Bragg stacks. This leads to an overlap integral which is substantially lower than that available 
between the zero-order TIR mode at 1550 nm and the zero-order BRW mode at 775 nm. 
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Fig. 5. Modal index of both the TIR and BR modes due to the change of 
the core bandgap, and hence refractive index. 
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Therefore the effect of such modes, if they exist, on the efficiency of second harmonic 
generation is thought to be negligible.  

6. Tuning 

Tuning is essential for the majority of the applications for SHG. This device can be tuned 
using electro-optic or carrier induced effects in a p-i-n doped structure where the intrinsic 
layer overlaps chiefly with the core. Hence the refractive index of the core waveguide can be 
tuned using current or potential [8]. This will accordingly change the modal effective indices 
at both the fundamental and SH. The effect is shown in Fig. 5 where the modal indices 
overlap as the starting material bandgap, which in our case being Al0.3G0.7As. In this plot it is 
assumed that the refractive index change is caused by a change in the bandgap; however the 
effect is the same if current or other effects are used for tuning. One of the attractive features 
of using BRWs is that the waveguide dispersion can be tailored to minimise the mismatch 
with that of the TIR mode at the fundamental; however this entails using BR stacks that are 
much more complex than the quarter-wavelength plate used here, and hence will be presented 
elsewhere. Although thermal tuning is also possible, it is of less practical use in compound 
semiconductors, as more effective means are available for tuning, including electro optic and 
carrier tuning. 

The bandwidth of the BR mode depends on that of the bandgap of the cladding Bragg 
stack, which for a quarter-wavelength structure has a bandwidth [17], 
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However the actual bandwidth of the phase matching waveguide is likely to be limited by the 
overall dispersion, with the material and modal dispersion at the SH being the dominant 
factor. This can be seen from the material dispersion as shown in Fig. 2, the waveguide 
dispersion depicted in Fig. 5. 

The design offers distinct advantages over the techniques which have been developed 
previously;  
• No patterning along the direction of propagation and hence have the potential to possess 

low optical losses in comparison with other quasi-phase matching designs. However it 
must be noted that Fresnel and modal phase matching share this advantage with our 
technique.  

• Gain can be provided in structures through carrier injection via electrical pumping. The 
electrical pumping is readily available in such structures due to the work which has been 
carried out developing vertical cavity surface emitting lasers. 

• The structure lends itself to be grown along side active and passive photonic devices for 
monolithic integration. 

7. Conclusions  

A design which utilizes Bragg reflector waveguides to provide phase matching for second 
harmonic generation at a wavelength of 775 nm is reported for the first time. The structure 
offers an attractive alternative to the techniques investigated to date as it involves no 
patterning along the propagation direction and allows more control over the overlap between 
the interacting waves and hence lends itself to more efficient nonlinear interactions. However 
the bandwidth efficiency and tuning capabilities of this phase matching technique need to be 
experimentally verified. 
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