
Dispersion tailoring of the quarter-wave Bragg 
reflection waveguide 

Brian R. West and A. S. Helmy 
Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto 

 10 King’s College Rd., Toronto, ON, Canada M5S 3G4 
a.helmy@utoronto.ca 

 

Abstract:  We present analytical formulae for the polarization dependent 
first- and second-order dispersion of a quarter-wave Bragg reflection 
waveguide (QtW-BRW).  Using these formulae, we develop several 
qualitative properties of the QtW-BRW.  In particular, we show that the 
birefringence of these waveguides changes sign at the QtW wavelength.  
Regimes of total dispersion corresponding to predominantly material-
dominated and waveguide-dominated dispersion are identified.  Using this 
concept, it is shown that the QtW-BRW can be designed so as to provide 
anomalous group velocity dispersion of large magnitude, or very small 
GVD of either sign, simply by an appropriate chose of layer thicknesses.  
Implications on nonlinear optical devices in compound semiconductors are 
discussed. 
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1. Introduction 

The Bragg reflection waveguide (BRW) is a structure in which waveguiding is achieved by 
distributed reflection within a periodic cladding, as opposed to total internal reflection.  By 
utilizing Bragg reflection, it is possible for the waveguide core to have a lower index than the 
cladding, which is beneficial for gas- or liquid-core waveguiding.  In fact, the guided modes 
may have effective indices lower than all material indices, provided that the transverse 
propagation vector lies within the Bragg stop-band of the cladding.  Numerous other benefits 
are afforded by BRWs due to this unique guiding mechanism.  These waveguides have 
recently received interest for applications such as phase matching for nonlinear frequency 
conversion [1, 2], mechanically tunable air-core filters [3], polarization splitters [4], and 
electron accelerators [5].  However, one other application in which BRWs can be extremely 
useful is the control of overall waveguide dispersion.  This feature is of paramount importance 
for devices which use or manipulate optical pulses in picosecond and femtosecond regimes in 
materials with nonlinearities and/or considerable dispersion coefficients in the operating 
wavelength range.  One popular example is semiconductors at a wavelength of operation near 
their bandgap. 

Semiconductors provide useful functionality such as amplification, modulation and 
nonlinear effects when operated near the material resonances such as the bandgap.  In these 
regimes, the material dispersion is dominant over all other types of dispersion including 
waveguide dispersion.  This produces a limitation on the useful device length due to temporal 
pulse walk-off and pulse broadening [6].  These obstacles effectively set a lower limit on the 
useful pulse widths which can be used for a given device length.  However, device 
functionality and figures of merit such as amplification factor or modulation depth often rely 
on the length of the device [7], so a tradeoff in design principles clearly arises.  Additionally, 
in some devices which utilize nonlinear effects – for example, devices which rely on temporal 
soliton or soliton-like pulse propagation such as switches, pulse shaping elements or short 
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pulse mode-locked laser sources – the dispersion defines the threshold intensity at which 
solitons can be formed [8].  Therefore, by tuning the dispersion parameters in the waveguides 
forming these devices, control over the temporal soliton threshold power can be achieved.  
Moreover, because the dispersion sign can also be reversed, BRWs can be used to compel the 
propagating mode to possess a dispersion sign opposite to that of their constituent materials.  
By doing so, BRWs may enable the propagation of bright and dark temporal solitons in self- 
focusing materials [8], an attractive feature for many nonlinear photonic devices which has 
not been easily attainable to date.   

While the control of waveguide dispersion have been often reported in propagation 
orthogonal to periodic gratings, these structures have some limitation due to the tradeoff 
between the dispersion obtained and the structural scattering losses.  Numerous attempts to 
design practical structures with no periodic perturbation of the optical properties that provide 
the capability of tuning the dispersion have been reported [9, 10].  Pulse compression in 
photonic nano-wires [11], limited tuning of the waveguide dispersion in depressed cladding 
waveguides [12], fibers with photonic bandgap claddings [13, 14], Bragg waveguides with 
additional matching layers [15] and nonlinear surface waves at the interface of left- and right-
handed media [16] were all reported previously.  Some challenges that face the structures 
reported to date include the losses in the propagation direction due to structural scattering, the 
amount of control over the dispersion magnitude with respect to the material dispersion, and 
the inability to reverse the sign of dispersion.    

In this work, we demonstrate how the second-order dispersion of BRWs can be tuned and 
reversed in sign using BRWs.  This control will result in propagating modes with a total 
dispersion, comprised of material dispersion as well as waveguide dispersion, that is set by the 
BRW design parameters.  To demonstrate these effects we use a rigorous perturbation 
approach to derive analytical formulae for the first- and second-order polarization dependent 
dispersion of a nominally quarter-wave Bragg reflection waveguide (QtW-BRW).  The 
motivation to take this approach rather than the numerical ray-optics approach in [17] to 
demonstrate the dispersion tuning capabilities of BRWs is two-fold.  First, analytical solutions 
elucidate the relation between waveguide design parameters and dispersion, thus facilitating 
the design of waveguides with desired dispersive properties.  From a more practical 
standpoint, calculating higher orders of dispersion from the modeled dispersion curve through 
numerical differentiation or curve fitting may be inaccurate for some BRW designs due to 
poor conditioning of the modeled data (e.g. for very large or very small magnitudes of 
dispersion).  In section 2, the QtW-BRW will be described, and dispersion formulae are 
derived in section 3 and compared with numerical solutions for a representative QtW-BRW.  
Section 4 contains a discussion of the relative contributions of waveguide and material 
dispersion, and it is shown that for a wide range of waveguide designs, precise knowledge of 
the material dispersion is not required for accurate calculation of the waveguide dispersion.  
We introduce the concept of a normalized effective index and show that this value is critically 
related to the dispersion in a QtW-BRW, and discuss the implications of this work on 
improving nonlinear device performance in semiconductors. 

2. The quarter-wave Bragg reflection waveguide 

A one-dimensional Bragg reflection waveguide, first analyzed in detail by Yeh and co-
workers [18, 19], is shown in Fig. 1.  The cladding consists of slabs of index n1 and n2, with 
thickness a and b, respectively, where n1 > n2.  The cladding period is denoted as Λ = a + b.  
The core has index nco and thickness tco.  For this analysis it is assumed that the cladding 
consists of an infinite number of periods, although the results are valid for structures with a 
reasonably large number of periods [20].  In addition, it is assumed that the waveguide is 
symmetric about the core.  This is not a requirement of BRWs, but calculation of dispersion 
becomes considerably more complex in the presence of waveguide asymmetry. Hence we 
shall consider symmetric waveguides here for simplicity, although the methodology is 
applicable to asymmetric structures as well. 

The transverse propagation vector takes on discrete values in each slab, 
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Fig. 1.  Refractive index profile of a BRW. 
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(i = 1, 2, co), where ω is the angular frequency of the guided radiation and c is the speed of 
light.  The guided modes are determined by a mode dispersion equation, derived in [20] using 
a field transfer matrix description of the periodic cladding: 
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The term exp(iKTE(TM)Λ) is the one physically realizable eigenvalue of the field transfer matrix 
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which, due to the unimodularity of MFT, can be expressed as 
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The two regimes of TM waveguiding described in Eq. (2) are separated by the external 
Brewster angle condition in the cladding, at which energy localization is lost.  We define here 
a TM symmetry factor 
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and for the remainder of this paper we will refer to the “even” (ρ < 1) and “odd” (ρ > 1) TM 
modes in reference to their symmetry, as discussed in [20]. 
 The quarter-wave BRW (QtW-BRW) is one in which each cladding layer has an optical 
thickness of λ/4 with respect to the transverse propagation vector: 

 

(7) 

 
This places the ki in the middle of the stop-band, ensuring strong reflection and hence optimal 
confinement in the core.  As derived in [20], the effective index in this case is independent of 
polarization for slab waveguides and is equal to 
 

 

(8) 

 

 
for the fundamental mode, where the subscript on ω0 signifies the nominal angular frequency 
at which the quarter-wave condition is satisfied, as opposed to the variable ω that will be used 
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3. Analytical determination of dispersion 

To calculate the dispersion of a nominally quarter-wave BRW, we add a perturbation term Δki 
to each transverse propagation vector and examine the resulting change in Eq. (2).  As the 
polarization degeneracy is lifted when the waveguide is detuned from the quarter-wave 
condition, the ki become polarization dependent by Eq. (1).  Polarization subscripts on the ki 
will be omitted for brevity; however, those on the matrix elements will remain in order to 
indicate that their defining equations are unique to a specific polarization, as shown in Eq. (3). 

Using Eq. (2), the perturbed TE mode dispersion equation is given by 
 

 

 
 
 

(10) 
 

 
Expanding Eq. (10) to first order in the perturbation terms, 
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condition.  Next, we calculate the perturbed transfer matrix elements using Eq. (3), 

 
 
 
 
 
 
 
 

(12) 
 

resulting in a matrix element perturbation 

 
 
 
 
 
 

 (13) 

 
A similar analysis gives 

 

 
 
 

(14) 
 
 

.
][][)]([
][][)]([

2

)(
cot

1

TETETETE

TETETETE

11

cococo

coco

TETE

TETE

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ+−Δ+−Δ+
Δ++Δ+−Δ+

Δ+
−=

⎟
⎠

⎞
⎜
⎝

⎛ Δ+
Δ+

ΛΛ

ΛΛ

BBAAee

BBAAee

kk

i

tkk

kk

iKiK

iKiK

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−
Δ+Δ−Δ−≈Δ−

Λ

Λ

TETE

TETE

1co

coco

TE

TE )(
2 BAe

BAe

k

i

k

tk
iK

iK

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ−Δ−
+

Δ+Δ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++Δ−Δ+≈

⎥
⎦

⎤
⎢
⎣

⎡
Δ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Δ+
Δ++

Δ+
Δ++Δ+=

Δ+=

Δ+

2

2

1

1
2

1
2
2

1122

2

1

1

2
21

22
22

11

11

22
22

)(

TETETE

22
1

2
)1(

])sin[(
2

])cos[(

~

11

k

k

k

k

kk

kkkk

k

k

k

ki
bkakii

bkk
kk

kk

kk

kki
bkke

AAA

akki

.
2

1

2

1

4

1

2

1

212

1

1

2

2
2

2

1

1

2

122

1

1

2

1
1TE

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Δ+

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Δ=Δ

k
i

kk

k

k

k

k
k

k

k

k

k

k
i

kk

k

k

k

k
kA

π

π

.
1

2

1

4
1

2
1

12

1

1

2

2
2

2

1

1

2

122

1

1

2

1
1TE

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−Δ+

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−Δ=Δ

kk

k

k

k

k
k

k

k

k

k

k
i

kk

k

k

k

k
kB

π

(C) 2006 OSA 1 May 2006 / Vol. 14,  No. 9 / OPTICS EXPRESS  4078
#68524 - $15.00 USD Received 27 February 2006; revised 17 April 2006; accepted 18 April 2006



The matrix eigenvalue now contains a perturbation term that is easily calculated as [20,21] 
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where ΞTE is a field transfer perturbation matrix defined analogously to Eq. (4) and uTE is the 
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Eqs. (13)-(15), Eq. (11) reduces to the TE mode detuning equation 
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Finally, substituting Eqs. (20)-(22) into Eqs. (16)-(17), we solve for the first-order dispersion 
 

 
 
 

 
 
 
 

(23) 
 

 
For waveguides comprised of isotropic materials, polarization dependence in ∂neff/∂ω arises 
entirely through the term α, due to the polarization independence of neff under the quarter-
wave condition.  Furthermore, it is clear that the birefringence Δneff of the QtW-BRW must 
change sign at the QtW wavelength; 
 

 
 
 
 
 
 
 

(24) 
 

  
The terms are properties of the material system studied, and can be expressed 
analytically using appropriate semi-empirical Sellmeier coefficients or Adachi [22], 
Afromowitz [23], Pikhtin-Yas’kov [24], or Gehrsitz [25] formulae, for example.  
Alternatively, one can utilize a look-up table of experimental refractive index data [26], 
although data smoothing algorithms may be necessary for calculation of second- or higher-
order dispersion due to the inherent problem of calculating high-order derivatives of noisy 
data.  In the next section, we will discuss the effects of uncertainty in material dispersion on 
calculation of waveguide dispersion. 

We now apply Eq. (23) to the analysis of an AlxGa1-xAs QtW-BRW operating at a nominal 
wavelength of 1.55 μm.  To provide a strong resonance in the cladding, we utilize a very large 
index difference, GaAs/Al.75Ga.25As, with material indices calculated using [25].  The range of 
valid core indices and thicknesses in a QtW-BRW is determined by the requirement that the 
effective index is lower than all material indices.  This ensures that the mode is not evanescent 
in any layer, a condition that would otherwise prevent the possibility of a π/2 phase thickness.  
As n1 > (nco, n2) by definition, this requirement dictates that 0 < neff < min(nco, n2) [20], 
resulting in the constraints 
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We choose a core composition of Al.90Ga.10As and a core thickness of 350 nm.  Material 
dispersion data is shown in Table 1.  By Eq. (8), this 1-D waveguide has a polarization-
independent effective index of 1.9235 at 1.55 μm.  Cladding layer thicknesses (required only 
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to model the BRW at wavelengths that do not correspond to the quarter-wave condition) are 
determined by Eqs. (1) and (7).  Figure 2 shows the effective index curves for this waveguide, 
obtained by solving Eq. (2) at each wavelength in a region around 1.55 μm.  Note the change 
of sign for the birefringence, as predicted.  Normalized first-order dispersion ω(∂neff/∂ω) is 
shown in Fig. 3.  The analytical solution at 1.55 μm obtained using Eq. (23) is plotted as well, 
showing complete agreement with the numerical curves. 

Table 1.  Material dispersion data for the waveguides analyzed in Figs. 2-3, 5-7, λ=1.55 μm (from [25]) 

Layer Material ni ni′ [x 10-16 s] ni″ [x 10-32 s2]  
Core  Al0.9Ga0.1As 2.933 0.067 5.588 
Cladding 1  GaAs 3.374 1.345 14.993 
Cladding 2   Al0.75Ga0.25As 3.000 0.074 6.432 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Effective index for a BRW that is quarter-wave at 1.55 μm. (Blue: TE, green: TM).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Normalized first-order dispersion for the waveguide of Fig. 2. (Blue: TE, green: TM).  
● Analytical solution from Eq. (23) (TE), ■ Analytical solution (TM). 
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Second-order dispersion – or group velocity dispersion (GVD) – is derived analogously.  
Expanding Eq. (1) to second order about ω0, 
 

(26) 
 

and a Taylor expansion of the square root, (1+γ1x+γ2x
2)1/2 ≈ 1+γ1x/2+(γ2/2-γ1

2/8)x2, keeping 
terms up to second order in Δω, gives 
 
 

 
(27) 

 
 

with 
 

 
(28) 

 
 

and 
 

 
(29) 

 
 

Comparing Eq. (27) to Eq. (1), and eliminating the terms proportional to (Δω)3,   
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where 
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and 

 
(32) 

 
 

Finally, using Eqs. (16)-(17) and (30)-(32), we solve for the second-order dispersion, noting 
that the terms involving Gi and Hi cancel out due to Eq. (23): 
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In contrast to the first-order dispersion shown in Eq. (23), the polarization dependence of 
GVD arises not only due to the α terms, but also to the Si terms, via Ji and Pi, which reflect the 
polarization dependence of first-order dispersion.  In general, nth-order dispersion can be 
calculated in a similar iterative fashion by keeping terms up to order (Δω)n in the expansion of 
Eq. (1) and applying the results of all lower orders, although the resulting accuracy diminishes 
due to the use of successive lower-order approximations.  The analytical solutions are strictly 
valid at the nominal (quarter-wave) frequency.  When calculating the effective index in a 
region around this frequency, the bandwidth over which these dispersion figures are valid is 
dependent upon the particular design – it can be estimated by calculating the next-lowest 
order of dispersion.  For this reason, choosing a nominal operating wavelength far from the 
material bandgap will result in an extended bandwidth.  An example is given in [20] for first-
order dispersion. 

4. Discussion 

As with all waveguides, the dispersion of a QtW-BRW is dependent on both the material and 
geometry.  Separating these components in Eqs. (23) and (33) is difficult, but it is instructive 
to examine the case where the material dispersion can be considered negligible, for example 
in III-V semiconductors with photon energies far below the bandgap.  This study is motivated 
by the significant discrepancy among various III-V dispersion models in the literature (e.g. 
[22-25]).  Figure 4 shows compositional dependence of refractive index and index dispersion 
for AlxGa1-xAs at 1.55 μm using three of these models.  Here and throughout this work, we 
describe second-order dispersion using the dispersion parameter β2 ≡ ∂2β/∂ω2 = (ω/c)∂2n/∂ω2 
+ (2/c)∂n/∂ω.  While there is close agreement between the models of Afromowitz and 
Gehrsitz, the model of Adachi differs significantly, especially for low aluminum fraction.  It 
should be noted that in this wavelength region, the latter model relies on an extrapolation of 
empirical data from photon energies closer to the bandgap for 0 ≤ x ≤ 0.38, and additional 
data from the same source as used by Afromowitz at x = 1 in the mid-IR; this is a possible 
source of the discrepancy.  The uncertainty in material dispersion will lead to inaccuracies in 
calculating dispersion of the QtW-BRW; however, comparing the magnitudes of the 
quantities plotted in Figs. 3 and 4(b), it is clear that for this particular waveguide, material 
dispersion plays a relatively small role, which is more than one order of magnitude less than 
that of the waveguide dispersion. 

 

 (a) (b) (c) 

Fig. 4.  Index dispersion of AlxGa1-xAs at 1.55 μm using three different models.  (a) refractive 
index (b) normalized first-order dispersion (c) second-order dispersion parameter β2.  Blue: 
Afromowitz [23], Green: Adachi [22], Red: Gehrsitz et al. [25].  

 
Here, we examine the calculation of total dispersion under the assumption that material 

dispersion is zero.  The test structure has the same composition as the waveguide analyzed in 
Figs. 2-3, but the core thickness is allowed to vary in order to produce an effective index 
between 0 and nco.  Cladding layer thicknesses are altered accordingly to maintain QtW 
operation by Eqs. (1) and (7).  We define a normalized effective index B, which bears some 
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reflection waveguides; the variation of B with tco for waveguides of this composition is shown 
in Fig. 5:   
 

 
 

(34) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  Normalized effective index vs. core thickness for various QtW-BRWs with core and 
cladding compositions identical to the waveguide analyzed in Figs. 2 and 3.  

 
The normalized effective index is critically related to the dispersion.  From Eqs. (16)-(23), 

it is apparent that in the limit B → 0, Gi → ni + ω0∂ni/∂ω, Hi → 0, and thus ∂neff/∂ω → ∞ 
(first-order pole) for both TE and TM, regardless of the magnitude of material dispersion.  
Similarly, ∂2neff/∂ω

2 → -∞ (second-order pole).  We shall denote this as the “waveguide 
dispersion” limit, where the material dispersion is negligible.  Operating near this point offers 
the possibility of ultra-slow light propagation due to the large group index, Ng = neff + 
ω(∂neff/∂ω), with large anomalous GVD.  From Fig. 5, it appears that the tolerance of B to 
minor variations in core thickness is extremely tight.  This issue can be compensated for by 
designing the BRW as a p-i-n structure, with the core as an intrinsic layer, then tuning the 
resonance by carrier injection as described in [2,27]. 

In the “material dispersion” limit B → 1, the term α → 0, and thus ∂neff/∂ω approaches 
∂nco/∂ω and ∂2neff/∂ω

2 → ∂2nco/∂ω
2.  This represents the situation where all power is confined 

within the core, with the physically unrealizable requirement of infinite core thickness.  In this 
regime, the assumption of negligible material dispersion is invalid and will lead to relatively 
significant errors in estimating dispersion.  An interesting result of this analysis of the limiting 
cases is that if the core material has normal GVD, there exists a waveguide design that will 
provide zero GVD, and a very wide range of core thicknesses that provide the low GVD 
desired for soliton formation. 

In Fig. 6, the normalized first-order dispersion is plotted over the range 0.01 < B < 0.999, 
with and without the contribution of material dispersion.  There is negligible difference for B 
< 0.9, suggesting that accurate values of material dispersion are not required in this range.  As 
expected, the normalized dispersion approaches ω(∂nco/∂ω) ≈ .081 as B → 1 [see Fig. 4(b)].  
Only the TE mode is considered here; the TM mode exhibits similar characteristics. The GVD 
parameter -β2 is plotted in Fig. 7 (using the negative dispersion parameter has no physical 
significance; it only allows the logarithmic scale to be used).  The inset shows the region 
around B ≈ 1, where β2 approaches the core value of 0.23 fs2/μm [see Fig. 4(c)]  As mentioned 
previously, there is a waveguide design for which β2 = 0, at B ≈ 0.996, or by Fig. 5, tco ≈ 3 μm.  
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The small variation of B with tco in this range suggests that thickness tolerance is not an issue.  
Furthermore, the wide core need not be an impediment to single-mode operation, as guided 
modes in BRWs need to satisfy both the resonance condition in the core and the Bragg 
condition in the cladding [18]. 

It can also be shown that for the TE and even TM mode, normal first-order material 
dispersion implies normal first-order waveguide dispersion.  Using Eqs. (16), (17), (21), and 
(22), and recalling that neff < ni, it is clear that Gi and Hi are positive quantities and αTE, 
αTM

EVEN are negative.  Thus, by Eq. (23), ∂neff/∂ω > 0 for all values of B.  
From the above examples, we can see that the use of analytical formulae, Eqs. (23) and 

(33), has greatly facilitated the analysis of QtW-BRWs.  The method presented here serves as 
a quick check for the existence of a zero-GVD wavelength for a given waveguide design.  It 
also affords the ability to directly assess the effect of various BRW design parameters on the 
position of the zero-GVD wavelength.  The analytical formulae developed here can also be 
used as a stepping stone for the study of higher order dispersion terms which are important for 
pulses with temporal widths in the femtosecond regime by a similarly rigorous analytical 
approach.  The formulae also minimize the numerical errors encountered in purely numerical 
approaches, leaving the error limitations to those inherent to the material dispersion models.  
These errors are important in dispersion calculations because many devices operate in regimes 
around zero dispersion, where absolute errors are critical and where higher order terms are of 
substantial importance.  

The implications for nonlinear optical propagation can be best highlighted by recalling 
that the threshold power for first-order solitons is proportional to β2 and inversely proportional 
to the square of the pulse width [8].  This suggests an onset for soliton-like propagation within 
a BRW that is essentially controllable via the BRW parameters as seen in Fig. 7.  This control 
over dispersion can take place also post waveguide growth.  We have shown previously the 
capability of tuning the properties of BRWs using electro-optic as well as current injection 
effects [2, 27].  It is therefore evident that BRWs offer a practical tool for implementing 
nonlinear devices in compound semiconductors using low optical power for all-optical 
switching, for example. 

In addition, the inset of Fig 7 demonstrates the capability of designing BRWs with a 
positive β2.  Note that this change in sign has been achieved solely through the waveguide 
dispersion control and does not include any excessive absorption due to a material resonance.  
This offers the capability of observing dark solitons in materials with self-focusing third-order 
nonlinearity using a low loss, tunable device [8], an attractive capability for optical switching 
and all-optical control devices. 

5. Conclusion 

Using a perturbation of the mode dispersion equation, formulae for first- and second-order 
dispersion of a quarter-wave Bragg reflection waveguide have been derived.  Although the 
effective index of the BRW is polarization-independent at the quarter-wave point, the 
dispersion is not, and thus the sign of birefringence changes here.  Furthermore, the first-order 
dispersion of symmetric fundamental modes is normal for waveguides composed of materials 
with normal dispersion.  Depending on the design of the QtW-BRW, dispersion can be 
dominated by the core material (for large tco) or by the waveguide form (for very narrow 
cores).  In the latter regime, first-order and second-order dispersion asymptotically approach 
∞ and -∞ respectively, as the effective index approaches zero.  Between these extreme limits, 
there exists a waveguide design that shows zero GVD.  Due to the low loss nature of BRWs, 
as they do not possess refractive index modulation in the direction of propagation, they offer 
an attractive building block for nonlinear optics in semiconductors. 
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Fig. 6. Normalized first-order dispersion vs. normalized effective index of the TE mode 
including (blue) and omitting (green) the contribution of material dispersion.  Inset: region 
around B  ≈ 1.  The curves are indistinguishable for B  < 0.9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.  Second-order dispersion parameter -β2 vs. normalized effective index of the TE mode 
including (blue) and omitting (green) the contribution of material dispersion.  Inset: region 
around B  ≈ 1 (linear scale).  Negative β2 is shown here only to facilitate the use of the 
logarithmic scale. 
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