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Properties of the quarter-wave Bragg reflection
waveguide: theory
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The Bragg reflection waveguide (BRW), or one-dimensional photonic crystal waveguide, has recently been pro-
posed for a wide spectrum of applications ranging from particle acceleration to nonlinear frequency conversion.
Here, we conduct a thorough analytical investigation of the quarter-wave BRW, in which the layers of the reso-
nant cladding have a thickness corresponding to one quarter of the transverse wavelength of a desired guided
mode. An analytical solution to the mode dispersion equation is derived, and it is shown that the quarter-wave
BRW is polarization degenerate, although the TE and TM mode profiles differ significantly as the external
Brewster’s angle condition in the cladding is approached. Analytical expressions for waveguide properties such
as the modal normalization constants, propagation loss, and overlap factors between the mode and each wave-
guide layer are derived, as are dispersion and tuning curves. © 2006 Optical Society of America

OCIS codes: 130.3120, 230.7370, 230.1480.
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. INTRODUCTION
ncreased device functionality is a prerequisite for the
ext generation of optical networks, as well as the emerg-

ng fields of biophotonics, optical networks, optical sens-
ng and signal processing, and microwave photonics. To
chieve certain propagation properties while accommo-
ating the dispersive properties of optical materials, it
as become necessary to move away from the common to-
al internal reflection (TIR) waveguide and instead inves-
igate the use of resonant-cladding waveguides. There has
een much promise in the properties afforded by photonic
andgap waveguides; however, implementations have
een disappointing owing to practical issues such as litho-
raphic accuracy and scattering losses. Also as important
s the fact that the waveguiding properties have been en-
ineered, to date, chiefly through two-dimensional planar
hotonic bandgap structures. Although these provide
ome control over the propagation properties, some of
hese characteristics are still determined by the lateral
IR structures. Therefore, the need still exists for versa-
ile, low-loss waveguides that provide control over guiding
roperties such as mode size, group-velocity dispersion,
nd effective index tunability and maintain single-mode
peration while controlling mode shapes, etc. The Bragg
eflection waveguide (BRW) has recently emerged as a
trong contender for these applications. However, a thor-
ugh analytical investigation has not been available to
ate, to the best of our knowledge.
The BRW was first analyzed in detail by Yeh and

oworkers.1,2 In this structure, transverse waveguiding is
chieved not by TIR but by distributed reflection within a
eriodic cladding. As such, the guided modes can have ef-
ective indices lower than all material indices—and even
ess than unity—provided that the transverse propaga-
ion vector lies within the Bragg stop band of the clad-
ing. This phenomenon has provided increased function-
lity of photonic devices, for instance, in electron
0740-3224/06/061207-14/$15.00 © 2
ccelerators,3,4 and phase matching for nonlinear fre-
uency conversion.5 In addition, BRWs have been pro-
osed for applications such as mechanically tunable air-
ore filters,6 polarization splitters,7 and soliton
ropagation.8

The quarter-wave BRW (QtW-BRW) is a special case in
hich the cladding layers have an optical thickness equal

o one quarter of the wavelength with respect to the
ransverse propagation vector of the guided mode. This
onstraint serves to place the guided mode in the center of
he stop band, maximizing the confinement in the core.
eh derived basic properties of the quarter-wave stack for
ormal incidence and in the case of a mode confined near
he interface between two periodic claddings (with no
ore).9 However, to the best of our knowledge, no previous
ork has been carried out on systematic determination of
nalytical expressions for the properties of the QtW-BRW.
uch expressions are of great benefit to the design com-
unity in that they reduce reliance on complex and ex-

ensive numerical modeling tools. As will be demon-
trated in this work as well, a careful investigation of
aveguiding for TM polarization, which has not been pre-
iously analyzed, leads to the identification of two re-
imes of operation for the TM mode, depending on the
elative magnitudes of the ray angle and exterior Brew-
ter’s angle in the cladding. This has tremendous promise
n the design of highly polarization-selective devices. This
nalysis also shows that the QtW-BRW is polarization de-
enerate, a property that can be exploited in quantum op-
ical applications, such as the efficient generation of
olarization-entangled photon pairs.10

In this work, we derive analytical formulas for several
mportant properties of the one-dimensional (slab) QtW-
RW. In Section 2, we follow the formalism of Yeh to de-
ive the mode dispersion equation for the general (non-
tW) BRW but extend the derivation to include both TE
nd TM modes. The mode dispersion equation is then
006 Optical Society of America
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ubjected to the quarter-wave constraint in Subsection
.C, with subsequent solution of the normalized guided
odes. In Section 3, we derive analytical expressions for

everal properties of the waveguide—modal overlap fac-
ors with each region of the waveguide, propagation loss
n a cladding of finite thickness, and first-order chromatic
ispersion of the mode. Section 4 will introduce an ana-
ytical approximation to the tuning curves of the effective
ndex through a perturbation of the core index. Calcula-
ion of tuning and dispersion is facilitated through the de-
elopment of a generalized first-order perturbation theory
n Appendix A. Finally, in Section 5, we will extend the
nalysis to the practical case of two-dimensional channel
aveguides, in which transverse confinement is provided
y TIR.

. MODE DISPERSION EQUATION OF THE
UARTER-WAVE BRAGG REFLECTION
AVEGUIDE

he one-dimensional general BRW is shown in Fig. 1. By
onvention, the cladding consists of slabs of index n1
thickness a) and n2 (thickness b), with n1�n2, and n1 is
losest to the core. The core has thickness tc and index nc.
or most applications, nc is less than n2, although this is
ot strictly necessary for Bragg waveguiding, as will be
hown below. The cladding is assumed to contain an infi-
ite number of periods; the effect of a large but finite
umber of periods will be discussed as a special case.
uided-mode propagation is along z, and we assume that
/�y=0. The electric field can thus be written as1

E�x,y,z,t� = E�x�exp�i��t − �z��, �1�

here �=2�neff /�=k0neff is the propagation constant, neff
s the modal effective index, and E�x� is the transverse
eld envelope, which satisfies the equation

�2E�x�

�x2 + k2�x�E�x� = 0. �2�
a
i
o
=
w
a

The term k�x� is the transverse propagation vector,
hich takes on discrete values in each slab,

ki = k0�ni
2 − neff

2 . �3�

e shall concentrate on symmetric waveguides, for which
�−x�=n�x�. In this case, the guided modes possess either
ven or odd symmetry. Although the BRW may support
everal modes, only one will be at the quarter-wave con-
ition, and it is unlikely that other modes will fall within
he cladding stop band.2 Thus, we concentrate on only the
owest-order mode for each polarization and note that the
erivation of higher-order modes proceeds in a similar
ashion.

. Transverse-Electric Polarization
or a slab waveguide in which the x direction is normal to

he substrate and propagation is defined to be along the z
xis, the TE mode has field components Ey, Hx, and Hz,
ith all other components equal to zero. Only one compo-
ent is independent, with the others determined by Max-
ell’s curl equations. We will thus concern ourselves only
ith Ey. For the lowest-order mode, we can assume a field
nvelope of the form9

ig. 1. Index profile of a one-dimensional BRW.
Ey�x� = �C1
TE cos�kcx�, �x� �

tc

2
�core�

C2
TEEK,TE��x� −

tc

2	exp
iKTE��x� −
tc

2	� �x� �
tc

2
�cladding�� , �4�
here Ci are polarization-dependent constants to be de-
ermined, kc is the transverse wave vector in the core
ayer, and KTE is the Bloch wave vector, defined below.
he assumption of an infinite cladding implies that � is
eal (absorption in the waveguide is presumed negligible
ere). For ease of notation, we will consider only the re-
ion x�0 and note that E�−x�=E�x� by symmetry. Accord-
ng to the Floquet theorem, EK,TE�x� is periodic with pe-
iod �=a+b, which can be denoted
EK,TE�x + �� = EK,TE�x�. �5�

The properties of the field in the cladding have been ex-
mined extensively by Yeh9 and are reproduced here us-
ng the coordinate system of Fig. 1. For an infinite peri-
dic stack, the electric field in the nth unit cell (n
0,1,2. . ., where the zeroth unit cell is adjacent to the
aveguide core) can be written as the sum of incoming
nd outgoing waves,
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Eclad�x� = �an,TE exp
ik1�x −
tc

2
− n�	� + bn,TE exp
− ik1�x −

tc

2
− n�	� , n� � �x −

tc

2	 � n� + a

cn,TE exp
ik2�x −
tc

2
− n� − a	� + dn,TE exp
− ik2�x −

tc

2
− n� − a	� , n� + a � �x −

tc

2	 � �n + 1��� , �6�
m
b
f
g
a
v
B

i

I

here the amplitudes an, bn, cn, and dn are to be deter-
ined. In the cladding regions of index n1, these are re-

ated between adjacent unit cells by a unimodular field-
ransfer matrix,

�an−1

bn−1
	

TE

= 
A B

C D�
TE
�an

bn
	

TE

. �7�

he matrix elements for TE polarization are

ATE = exp�ik1a�
cos k2b +
i

2�k2

k1
+

k1

k2
	sin k2b� ,

BTE = exp�− ik1a�
 i

2�k2

k1
−

k1

k2
	sin k2b� ,

CTE = BTE
* , DTE = ATE

* . �8�

he periodicity of EK,TE�x� requires that

�an−1

bn−1
	

TE

= exp�iKTE���an

bn
	

TE

, �9�

hich, by Eq. (7), leads to the eigenequation


A B

C D�
TE
�an

bn
	

TE

= exp�iKTE���an

bn
	

TE

. �10�

The eigenvalues of Eq. (10) are, using Eqs. (8),

exp�iKTE�� = Re�ATE� ± ��Re�ATE��2 − 1, �11�
ith corresponding eigenvectors f

Ey�− x� = Ey�x�.
�an

bn
	

TE

= 
 BTE

exp�iKTE�� − ATE
� = exp�− inKTE���a0

b0
	

TE

�12�

ultiplied by an arbitrary constant (which will hereafter
e included in C2

TE). The last term in Eq. (12) follows
rom repeated application of Eq. (9). As the product of ei-
envalues is equal to the determinant (which is unity for
unimodular matrix), the eigenvalues must be the in-

erse of one another. By summing them, one can find the
loch wave vector:

KTE =
1

�
cos−1�Re�ATE��. �13�

Within a unit cell of the cladding, the field components
n adjacent slabs are related by the transfer matrix9

� cn

dn
	

TE

=
1

2
exp�ik1a��1 +
k1

k2
	 exp�− ik1a��1 −

k1

k2
	

exp�ik1a��1 −
k1

k2
	 exp�− ik1a��1 +

k1

k2
	�

	�an

bn
	

TE

. �14�

nserting Eqs. (12) and (6) into Eq. (4) gives the complete

orm of the field in the waveguide:
Ey�x� =�
C1

TE cos�kcx�, 0 � x �
tc

2

� + b0,TE exp
− ik1�x −
tc

2
− n�	��exp�inKTE��,

C2
TE�a0,TE exp
ik1�x −

tc

2
− n�	�� n� � �x −

tc

2	 � n� + a

� + d0,TE exp
− ik2�x −
tc

2
− n� − a	��exp�inKTE��,

C2
TE�c0,TE exp
ik2�x −

tc

2
− n� − a	�� n� + a � �x −

tc

2	 � �n + 1��

� ,
�15�
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inally, enforcing continuity of Ey and Hz (proportional to
Ey /�x) at the core–cladding interface leads, via Eqs. (12)
nd (15), to the mode dispersion equation

1

kc
cot�kctc

2 	 =
− i

k1

exp�iKTE�� − ATE + BTE

exp�iKTE�� − ATE − BTE
. �16�

. Transverse-Magnetic Polarization
he TM mode contains nonzero field components Hy, Ex,
nd Ez, where, as before, only one can be considered inde-
endent. Here, we solve for Hy and use the curl relation

Ex�x� =
�

�

Hy�x� �17�

o determine the electric field normal to the slab inter-
aces, where 
 is the dielectric constant, proportional to
2. The TM mode contains an additional subtlety not en-
ountered in the TE case, in which the ray angle in the
ladding may be greater than or less than the external

rewster’s angle,

�

�B� = tan−1�n2

n1
	 . �18�

t is important to note that the internal Brewster’s angle,
B=tan−1�n1 /n2�, is not applicable to this discussion, as it
xceeds the critical angle for TIR. In terms of transverse
ropagation vectors, the external Brewster’s angle condi-
ion corresponds to

n1
2k2 = n2

2k1. �19�

The phase changes on reflection from each cladding
ayer shift by a factor of � as the external Brewster’s
ngle is surpassed. As a result, the positions of the nulls
nd maxima in field amplitude shift by a half-period in
he cladding. In particular, the boundary conditions at the
ore–cladding interface are altered, necessarily changing
he symmetry of the fundamental TM mode. When condi-
ion (19) holds exactly, the electromagnetic energy is no
onger localized, and the TM mode does not exist. This
ituation is useful in the design of a single-polarization
aveguide but will not be explored further.

The field envelope takes the form
Hy�x� =�
C1

TM cos�kcx�, 0 � x �
tc

2
, n1

2k2 � n2
2k1

C1
TM sin�kcx�, 0 � x �

tc

2
, n1

2k2 � n2
2k1

C2
TMHK,TM�x −

tc

2	exp
iKTM�x −
tc

2	� , x �
tc

2

� ,

Hy�− x� = �Hy�x�, n1
2k2 � n2

2k1

− Hy�x�, n1
2k2 � n2

2k1
� , �20�
here HK,TM�x� has the same functional form as EK,TE�x�,
ut with9

ATM = exp�ik1a�
cos k2b +
i

2�n2
2k1

n1
2k2

+
n1

2k2

n2
2k1

	sin k2b� ,

BTM = exp�− ik1a�
 i

2�n2
2k1

n1
2k2

−
n1

2k2

n2
2k1

	sin k2b� ,

CTM = BTM
* DTM = ATM

* , �21�
cn

dn
	

TM

=
1

2�n2k1

n1k2
	

	
exp�ik1a��1 +
n1

2k2

n2
2k1

	 exp�− ik1a��1 −
n1

2k2

n2
2k1

	
exp�ik1a��1 −

n1
2k2

n2
2k1

	 exp�− ik1a��1 +
n1

2k2

n2
2k1

	�
	�an

bn
	

TM

. �22�



C
c
d

C
W
t

I

f
b
v
t
s

w
fi

N
t
a

I
s
e
g

w

Q
p
a
m
t

a

r
p
s
r
a
t
r
a
a
d
fl
c
s
z

a
w
t
t
w
c

O
c
(
n
d
fi
e

B. R. West and A. S. Helmy Vol. 23, No. 6 /June 2006/J. Opt. Soc. Am. B 1211
ontinuity of Hy and Ez (proportional to n−2�Hy /�x) at the
ore–cladding interface leads, via Eqs. (20), to the mode
ispersion equation

1

kc
cot�kctc

2 	 =
− i

k1
�n1

nc
	2exp�iKTM�� − ATM + BTM

exp�iKTM�� − ATM − BTM
,

n1
2k2 � n2

2k1,

kc cot�kctc

2 	 = ik1�nc

n1
	2exp�iKTM�� − ATM − BTM

exp�iKTM�� − ATM + BTM
,

n1
2k2 � n2

2k1. �23�

. Quarter-Wave Condition
e will now enforce the quarter-wave condition within

he cladding. This is defined by

k1a = k2b = �/2. �24�

nserting Eq. (24) into Eqs. (8) and (21) gives

ATE = DTE = −
1

2�k2

k1
+

k1

k2
	 ,

BTE = CTE =
1

2�k2

k1
−

k1

k2
	 , �25�

ATM = DTM = −
1

2�n2
2k1

n1
2k2

+
n1

2k2

n2
2k1

	 ,

BTM = CTM =
1

2�n2
2k1

n1
2k2

−
n1

2k2

n2
2k1

	 �26�

or the QtW-BRW, all real quantities for neff�n1, n2. For
oth polarizations �A��1, so by Eq. (13), the Bloch wave
ector must have an imaginary component, confirming
hat the transverse field of the mode does indeed lie in the
top band of the cladding. With Eqs. (25), (26), and (13),

K� = ��2m − 1�� ± i ln�k2

k1
	 �TE�

�2m − 1�� ± i ln�n2
2k1

n1
2k2

	 �TM�� , �27�

here m=1,2, . . . is the Bragg order of the cladding. For a
rst-order cladding, the matrix eigenvalue becomes

exp�iK�� =�
− �k2

k1
	 �TE�

− �n1
2k2

n2
2k1

	 �TM,n1
2k2 � n2

2k1�

− �n2
2k1

n1
2k2

	 �TM,n1
2k2 � n2

2k1�
� . �28�

ote that the sign of Im�K�� in Eq. (27) is chosen such
hat �exp�iK����1, necessitated by the physically realiz-
ble condition that the field must decay in the cladding.
nserting Eqs. (25), (26), and (28), into Eqs. (16) and (23)
hows that the right-hand side of the mode dispersion
quation equals zero in the quarter-wave case. Thus,
uided modes occur for both polarizations when

kctc

2
=

�p + 1��

2
, p = 0,2,4, . . . , �29�

here p is the mode order.
We shall concern ourselves with only the fundamental

tW-BRW mode for the remainder of this paper, for which
=0. The derivation of higher-order modes proceeds
nalogously, although the reader is cautioned that these
odes represent a physically different cladding structure,

hrough Eqs. (3) and (24). In this case,

kc =
2�

�
�nc

2 − neff
2 =

�

tc
�30�

nd thus

neff = 
nc
2 − � �

2tc
	2�1/2

, �31�

egardless of polarization, showing that the QtW-BRW is
olarization degenerate (for isotropic materials). This re-
ult can be justified by examining the QtW-BRW from a
ay-optics viewpoint. With TIR guides, form birefringence
rises owing to the polarization dependence of the reflec-
ion phase at the core–cladding interface. With BRWs, all
eflections are either external or internal (with incident
ngles less than the critical angle for TIR). In both cases,
ll reflection phases are either zero or �. When the clad-
ing layers have quarter-wave optical thickness, the re-
ections all sum in phase, the reflection phase from the
ladding stack is also either zero or �, and the round-trip
um of reflection phases from both claddings has modulus
ero for both polarizations.

It must be noted that the effective index cannot exceed
ny material indices. If this condition is violated, the field
ill be evanescent in this material, and quarter-wave

hickness can only be asymptotically achieved.11 In addi-
ion, Eq. (31) only results in physically realizable modes
hen the argument of the square root is positive. These

onditions constrain the guide width to

�

2nc
� tc �

�

2�nc
2 − n2

2
�nc � n2�,

�

2nc
� tc �nc � n2�. �32�

nce the effective index has been determined, the ki and
ladding layer widths can be calculated using Eqs. (3) and
24), respectively. To fully specify the field envelope, we
eed only to calculate the field amplitudes in the clad-
ing. Inserting Eqs. (25), (26), and (28) into Eq. (12), we
nd that the field components in the cladding layer near-
st the core (index n ) satisfy
1
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a0 = − b0 �TE,TM �n1
2k2 � n2

2k1��,

a0 = b0 �TM �n1
2k2 � n2

2k1��. �33�

n the adjacent cladding layer (index n2), by Eqs. (14) and

22), r

TM

p
r
q

T

w
a

c0 = d0 = ia0 �TE,TM �n1
2k2 � n2

2k1��,

c0 = − d0 = ia0 �TM �n1
2k2 � n2

2k1��. �34�

The absolute magnitude of the field components is not
elevant here, as the entire mode will be normalized in
ubsection 2.D. Inserting Eqs. (33) and (28) into Eqs. (15)

esults in
ETE�x� =�
C1

TE cos�kcx�, x �
tc

2

C2
TE�−

k2

k1
	n

sin
k1�x −
tc

2
− n�	� , n� � �x −

tc

2	 � n� + a

C2
TE�−

k2

k1
	n

cos
k2�x −
tc

2
− n� − a	� , n� + a � �x −

tc

2	 � �n + 1��
� , �35�

hereas inserting Eqs. (34) and (28) into Eqs. (20) and applying Eq. (17) results in

ETM�x� =�
C1

TM

nc
2 cos�kcx�, x �

tc

2

C2
TM

n1
2 �−

n1
2k2

n2
2k1

	n

sin
k1�x −
tc

2
− n�	� , n� � �x −

tc

2	 � n� + a

C2
TM

n2
2 �−

n1
2k2

n2
2k1

	n

cos
k2�x −
tc

2
− n� − a	� , n� + a � �x −

tc

2	 � �n + 1��
� , �36�

or n1
2k2�n2

2k1, and

ETM�x� =�
C1

TM

nc
2 sin�kcx�, x �

tc

2

C2
TM

n1
2 �−

n2
2k1

n1
2k2

	n

cos
k1�x −
tc

2
− n�	� , n� � �x −

tc

2	 � n� + a

− C2
TM

n2
2 �−

n2
2k1

n1
2k2

	n

sin
k2�x −
tc

2
− n� − a	� , n� + a � �x −

tc

2	 � �n + 1��
� , �37�
or n1
2k2�n2

2k1, where the constants � and � in Eq. (17)
ave been included in C1

TM and C2
TM. Thus, we see that the

rewster’s angle condition (19) separates regimes in
hich the fundamental TM mode has even or odd symme-

ry.

. Normalization
he constants C1 and C2 in Eqs. (35)–(37) are determined
y the simultaneous conditions that (i) the integrated
eld intensity ��E�x��2 dx must be equal to 1 and (ii)
E�x� /�x (TE), n2�E�x� /�x (TM, n1

2k2�n2
2k1), or n2E�x�

TM, n1
2k2�n2

2k1) must be continuous at the core–
ladding boundary. The usual boundary condition of con-
inuity of ETE�x� cannot be exploited here, as there is a
ull at the boundary. Similarly, the usual condition that
2�E �x� /�x is constant at the boundary cannot be ap-
lied in the regime n1
2k2�n2

2k1 as the field has zero de-
ivative, through Eqs. (37) and (29). Condition (ii) re-
uires that

C2 = �−
kc

k1
C1 �TE,TM �n1

2k2 � n2
2k1��

C1, �TM �n1
2k2 � n2

2k1��
� . �38�

o normalize the modes, we set

�
−





�E�x��2dx = 2�
0




�E�x��2dx = 1, �39�

here the second integral arises owing to symmetry
bout the origin. This integral is divided into three parts,
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Ic + I1 + I2 =
1

2
, �40�

here Ic, I1, and I2 represent the core, n1, and n2 regions,
espectively. For TE polarization, in the core,

Ic =�
0

tc/2

�C1
TE�2 cos2�kcx�dx =

�C1
TE�2tc

4
. �41�

n the regions of index n1,

I1 = �C2
TE�2�

n=0


 �
tc/2+n�

tc/2+n�+a �−
k2

k1
	2n

sin2
k1�x −
tc

2
− n�	�dx

= �C2
TE�2�

0

a

sin2�k1x�dx�
n=0


 �−
k2

k1
	2n

=
�C2

TE�2a�TE

2
, �42�

here we have introduced the factor

� � �
n=0




exp�i2K�� =�
k1

2

k1
2 − k2

2
�TE�

n2
4k1

2

n2
4k1

2 − n1
4k2

2
�TM,n1

2k2 � n2
2k1�

n1
4k2

2

n1
4k2

2 − n2
4k1

2
�TM,n1

2k2 � n2
2k1�

� ,

�43�

nd, likewise,

I2 =
�C2

TE�2b�TE

2
. �44�

nserting Eqs. (38) and (41)–(44) into Eq. (40) results in

C1
TE = 
 tc

2
+

�kc
2�TE�k1 + k2�

2k1
3k2

�−1/2

, �45�

nd, from Eq. (38),

C2
TE =

− kc

k1
 tc

2
+

�kc
2�TE�k1 + k2�

2k1
3k2

�1/2 . �46�

or the TM mode, an identical derivation using Eq. (36)
ives

C1
TM = 
 tc

2nc
4 +

�kc
2�TM�n1

4k1 + n2
4k2�

2n1
4n2

4k1
3k2

�−1/2

, �47�

C2
TM =

− kc

k1
 tc

2nc
4 +

�kc
2�TM�n1

4k1 + n2
4k2�

2n1
4n2

4k1
3k2

�1/2 , �48�

or n1
2k2�n2

2k1, and

C1
TM = C2

TM = 
 tc

2nc
4 +

��TM�n1
4k1 + n2

4k2�

2n1
4n2

4k1k2
�−1/2

, �49�

or n2k �n 2k .
1 2 2 1
Field profiles for two QtW-BRWs are shown in Fig. 2,
ith the waveguide design parameters listed in Table 1.
or QtW-BRW #1, n1

2k2�n1
2k2 and, hence, by Eq. (36), the

undamental TM mode is even [Fig. 2(a)]. For QtW-BRW
2 [Fig. 2(b)], n1

2k2�n2
2k1, and thus the fundamental

M mode is odd, as indicated in Eq. (37). The field profiles
re normalized, showing that the TE mode is more local-

Table 1. Waveguide Design Parameters
Used in Fig. 2

arameter QtW-BRW #1 QtW-BRW #2

c 3.25 3.0

1 3.6 3.8

2 3.3 3.2

c (nm) 250 180
��m� 0.775 0.775
(nm) 88.4 61.1
(nm) 117.3 79.9
(nm) 205.7 141.0

2/k1 0.7524 0.7636

1
2k2 /n2

2k1 0.8975 1.0768

eff 2.8566 2.0894

ig. 2. Field profiles for two different QtW-BRWs. Fields are
ormalized to show the stronger localization of the TE mode.
aveguide design parameters are listed in Table 1. Solid curve,
y (TE mode); dotted curve, Ex (TM mode). (a) n1

2k2 /n2
2k1

0.8975, (b) n1
2k2 /n2

2k1=1.0768.
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zed near the core. This effect can be explained by noting
hat the decay factor �exp�iKTE���� �exp�iKTM���. It has
een exploited in the proposal of a polarization splitter
ased on a directional coupler in non-QtW-BRWs, with a
ignificant polarization dependence of coupling strength.7

ll field profiles have been confirmed by comparison with
hose found using a fully vectorial, finite-difference mode
olver.12 Having derived a complete set of analytical equa-
ions for the field in QtW-BRWs, we shall now study their
roperties in the remainder of this work.

. WAVEGUIDE PROPERTIES
. Overlap Factors
or various applications, such as chemical sensing

within a hollow core), electro-optic or electroabsorptive
odulation, or nonlinear frequency conversion, it is desir-

ble to know the fraction of mode power that resides in
ach material, cladding period, or individual layer. The
aterial power overlap can be determined easily from the

verlap integrals. For TE polarization,

�c
TE = �C1

TE�2tc/2, �50�

�1
TE = �C1

TE�2
�kc

2�

2k1
3 , �51�
T
g

�2
TE = �C1

TE�2
�kc

2�

2k1
2k2

, �52�

nd, for TM polarization,

�c
TM = �C1

TM�2tc/2nc
4, �53�

�1
TM = ��C1

TM�2
�kc

2�

2n1
4k1

3 , n1
2k2 � n2

2k1

�C1
TM�2

��

2n1
4k1

, n1
2k2 � n2

2k1� ,

�54�

�2
TM = ��C1

TM�2
�kc

2�

2n2
4k1

2k2
, n1

2k2 � n2
2k1

�C1
TM�2

��

2n2
4k2

, n1
2k2 � n2

2k1� .

�55�

he reader may easily verify that, for both polarizations,
c+�1+�2=1, as required.
The power fraction in the layer with index ni�i=1,2� in

he nth unit cell of the cladding (considering the upper
nd lower claddings separately) is equal to
�i
TE,n =

�i
TE

2�
�k2

k1
	2n

=
�i

TE

2 
�k2

k1
	2n

− �k2

k1
	2n+2� , �56�

�i
TM,n = �

�i
TM

2�
�n1

2k2

n2
2k1

	2n

=
�i

TM

2 
�n1
2k2

n2
2k1

	2n

− �n1
2k2

n2
2k1

	2n+2� �n1
2k2 � n2

2k1�

�i
TM

2�
�n2

2k1

n1
2k2

	2n

=
�i

TM

2 
�n2
2k1

n1
2k2

	2n

− �n2
2k1

n1
2k2

	2n+2� �n1
2k2 � n2

2k1�� . �57�
o estimate power leakage through a finite cladding, it is
seful to calculate the power in the first N unit cells of
ne cladding. Assuming that N is large enough such that
he finite cladding does not appreciably alter the mode
rofile, we use the partial sum

�TE,N =
��1

TE + �2
TE�

2� �
n=0

N−1 �k2

k1
	2n

=
��1

TE + �2
TE�

2 
1 − �k2

k1
	2N� ,

�58�
�TM,N = �
��1

TM + �2
TM�

2 
1 − �n1
2k2

n2
2k1

	2N� �n1
2k2 � n2

2k1�

��1
TM + �2

TM�

2 
1 − �n2
2k1

n1
2k2

	2N� �n1
2k2 � n2

2k1�� .

�59�

he simplicity of calculating the overlap integrals in any
iven layer within the structure as shown above demon-
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trates the power of the analytical approach taken here.
his lends itself as a powerful design tool for optimizing
tructures or devices or both based on QtW-BRWs with
elative ease and speed. In contrast, with most other
aveguide structures, the field has to be calculated for ev-
ry set of parameters, and an overlap integral needs to be
valuated to obtain similar figures.

. Propagation Loss
he preceding derivation of the mode dispersion equation
perated on the assumption that the cladding consists of
n infinite number of periods. For a mode that lies within
he cladding stop band, this results in no leakage during
ropagation. For practical devices, however, there will be
finite number of cladding periods. In this subsection, we
escribe a method of estimating the resulting loss. We as-
ume that the loss is low enough that the propagation
onstant � is essentially real and that there is negligible
erturbation to the unit-cell translation matrix formula-
ion described in Section 2.

The leakage in such devices can be estimated using a
ay-optics approach.13 In the ray-optics picture, the angle
f incidence between core and cladding is given by

�i = sin−1�neff

nc
	 = sin−1�
1 − � �

2nctc
	2�1/2� , �60�

nd the number of reflections per unit length is
/ �tc tan �i�. The reflection coefficient at the interface be-
ween the core and the finite cladding can be calculated
sing the transfer-matrix method of Chilwell and
odgkinson.14

In the transfer-matrix method, a unimodular field-
ransfer matrix Mj relates the field components in two
utually orthogonal directions (both parallel to the slab

nterfaces), between two adjacent layers,

Mj = 
 cos kjtj − �i/�j�sin kjtj

− i�j sin kjtj cos kjtj
� , �61�

here

�j =
1

�nj�2�
�nj

2 − neff
2 , � = �0 �TE�

1 �TM�� �62�

nd tj is the physical thickness of the layer. The transfer
atrix for a multilayer stack is given by the product of

hese matrices,

M = �
j

Mj = 
m11 m12

m21 m22
� , �63�

rom which the reflection coefficient can be calculated as

r =
�cm11 + �c�sm12 − m21 − �sm22

�cm11 + �c�sm12 + m21 + �sm22
, �64�

here �c and �s are defined analogously to Eq. (62) for the
ore and substrate, respectively.

For the QtW-BRW, the cladding at x�0 can be ex-
ressed as
M = �M1M2�N = �
 0 − i/�1

− i�1 0 �
 0 − i/�2

− i�2 0 �	N

= �− 1�N
��2/�1�N 0

0 ��1/�2�N� , �65�

eading to a reflection coefficient of

r =

�c��2

�1
	N

− �s��1

�2
	N

�c��2

�1
	N

+ �s��1

�2
	N . �66�

he power remaining after each reflection is �r�2. We can
ow calculate the propagation loss by using Eqs.
60)–(66):

Loss �decibels per centimeter� =
− � ln�r�

10nctc
2
1 − � �

2nctc
	2�1/2 .

�67�

lots of propagation loss versus N for �nc ,n1 ,n2 ,ns�
�3.5,3.75,3.25,3.75�, tc=250 nm, and �=775 nm are
hown in Fig. 3. As expected, loss decreases exponentially
ith N, approaching negligible values after just a few pe-

iods, and leakage of the TM mode is much greater than
hat of the TE mode. A second QtW-BRW with
nc ,n1 ,n2 ,ns�= �3.5,3.7,3.3,3.7� is shown on the same
lot. The smaller index difference in the cladding results
n a substantial increase in propagation loss. These re-
ults indicate that practical structures can be considered
ssentially lossless, contrary to the conclusions of previ-
us authors.15

. Dispersion
he dispersion of effective index with wavelength is a sig-
ificant factor in the design of many resonant6 or
onlinear5 devices. Chromatic dispersion of the nominally

ig. 3. Propagation loss in a QtW-BRW. Filled symbols, n1−n2
0.5; open symbols, n1−n2=0.4. Circles, TE; squares, TM.
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�W-BRW is analyzed by the first-order perturbation
heory derived in Appendix A. Let the perturbed indices
e denoted

ñi = ni + �ni. �68�

hen the perturbed transverse propagation vectors are
qual to

k̃i = ki + �ki

= � 2�

� + ��
	��ni + �ni�2 − �neff + �neff�2

�
2�

�
�1 −

��

�
	�ni

2 − neff
2 �1 +

ni�ni − neff�neff

ni
2 − neff

2 	 ,

�69�

here � is the nominal (quarter-wave) wavelength, from
hich we see that, to first order,

�ki � ki�ni�ni − neff�neff

ni
2 − neff

2 −
��

�
	

= Fi�� − ki�neff�neff

ni
2 − neff

2 +
��

�
	 , �70�

here

Fi �

k0
2ni

�ni

��

ki
�71�

s a term proportional to the chromatic dispersion of a
articular waveguide material. Inserting expression (70)
nto Eq. (A10) and rearranging terms give the chromatic
ispersion

ig. 4. Chromatic dispersion of the BRW mode, effective index
ersus wavelength (nominally quarter wave at �=775 nm). Solid
urve, numerical dispersion curve; dashed curve, analytical (lin-
ar) model from Eq. (72); dotted curve, error in analytical model.
�neff

��
=

�kc

tc�k2
2 − k1

2�
�F1 + F2 − �k1 + k2��−1� − Fc + kc�

−1

k0
2neff
 �kc

tck1k2�k2 − k1�
−

1

kc
� .

�72�

To investigate the range of applicability of this linear
pproximation, we model a waveguide in AlxGa1−xAs. The
aveguide is a quarter wave at a wavelength of 775 nm.
he aluminum fraction in the core is xc=65%, whereas in
he cladding, x1=20% and x2=58%. The core thickness is
50 nm. This waveguide approximates QtW-BRW #1 but
ncludes material dispersion of AlGaAs, which is modeled
fter Adachi.16 By Eq. (72), the dispersion is calculated as
neff /��=−2.89	10−3 nm−1. Figure 4 compares the effec-

ive index modeled using the mode dispersion equation
16) with the linear approximation. As expected, the re-
idual error is parabolic in the vicinity of 775 nm and is
ess than 0.01 across a range of over 80 nm. One can fur-
her reduce this error by employing a second-order ap-
roximation to the material dispersion, particularly in
he spectral region under consideration here, which is
ear the bandgap of the AlGaAs alloys used. The proce-
ure detailed here suggests how the waveguide dispersion
an be tuned by one’s adjusting the relative composition of
he core and cladding layers of the QtW-BRW. This tuning
an take place without affecting the propagation losses or
he field profile and may have many applications in non-
inear optics. For instance, soliton propagation relies on
he balance between third-order nonlinearities and the
aveguide dispersion. Controlling dispersion could be
sed to lower the zero-order soliton threshold. This will

ead to achieving solitonlike effects such as switching,
imiting, and particlelike temporal pulse robustness at
ower intensities.

. TUNING
aveguide device functionality is expanded by the ability

o tune the effective index of the guided mode. The tuning
echanism can take many forms, depending on the type

f material: altering the core thickness in an air-core
RW,6 changing the index of one or more layers by carrier

njection or electro-optic means in a semiconductor BRW,5

r thermo-optic tuning, just to name a few. In all cases, we
an consider tuning away from the quarter-wave condi-
ion by the perturbation method described in Appendix A.

Here we consider a waveguide in which only the core
ndex is altered, as might be encountered in a p-i-n struc-
ure in AlxGa1−xAs. In this case, the propagation vectors
n the cladding become

k̃i = ki + �ki = �2�

�
	�ni

2 − �neff + �neff�2 � ki�1 −
neff�neff

ni
2 − neff

2 	
�73�

i=1,2�, which results in

�ki =
− k0

2neff�neff

ki
. �74�

n the core,
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k̃c = �2�

�
	��nc + �nc�2 − �neff + �neff�2,

�kc � �k0
2

kc
	�nc�nc − neff�neff�. �75�

nserting expressions (74) and (75) into Eq. (A10) and re-
rranging terms give

�neff

�nc
=

nc

neff

1 +

�kc
2�k2 + k1�

tck1k2�k1
2 − k2

2��−1

. �76�

s an example, we use a nominal structure identical to
tW-BRW #1 (see Table 1). The core index is tuned from
.0 to 3.35. A linear tuning rate of �neff /�nc=0.391 was
alculated using Eq. (76), and, as Fig. 5 indicates, the lin-
ar approximation is accurate to within �3	10−4 over
his range. The tuning capability demonstrated here pro-
ides some insight into the practicality of these
aveguides. Although they rely on resonance effects, due

o finite fabrication tolerances, these resonances can de-
iate from the design values. The demonstrated tuning
bility can be used to ensure that the desired operating
onditions are accessible.

Note that the method described above gives a result
dentical to that found using Schrödinger perturbation
heory.17 In this theory, a small change in core index
auses a corresponding first-order change in propagation
onstant:

���2� �

k0
2�

core

�n2�x��E�x��2dx

�
−





�E�x��2dx

= k0
2�nc

2�c, �77�

hich, by using Eq. (50), is equivalent to Eq. (76). This
ustifies the application of our method in calculating the
ispersion as in Subsection 3.C.

ig. 5. Effective index versus core index for a BRW waveguide
nominally quarter wave at nc=3.25). Solid curve, numerical tun-
ng curve; dashed curve, analytical (linear) model from Eq. (76);
otted curve, error in analytical model.
. QUARTER-WAVE BRAGG REFLECTION
AVEGUIDE–TOTAL-INTERNAL-
EFLECTION CHANNEL WAVEGUIDE
or most practical devices, a waveguide must provide con-
nement in the transverse �y� direction as well. This is
asily accomplished in cylindrical Bragg fibers using a ra-
ial grating18 but is difficult to achieve using planar fab-
ication processes. In this section, we investigate the ef-
ect of using TIR for transverse confinement, as depicted
n Fig. 6. The waveguide under consideration is QtW-
RW #1 with 20 cladding periods on either side of the
ore, and we investigate waveguide widths between 0.8
nd 5.0 �m. We assume that the waveguide is surrounded
y air and calculate the modes by using a semivectorial
nite-difference method.19 Figure 7 shows the effective in-
ices of the first three modes as a function of width. The
odal subscripts �q ,p� denote the transverse (TIR) mode
umber and lateral (BRW) mode number, respectively.
ere, p=0 to indicate the fundamental BRW mode. For

ncreasing width, the effective indices approach that of
he slab guide, indicated by a horizontal line on the plot.
he confinement-induced birefringence favors the TM
ode and decreases with width. Figure 8 shows the inten-

ity of the first two modes at each polarization for the
�m waveguide. Confinement in the core is much stron-

er in the TE case, as explained in Subsection 3.B.

ig. 6. Channel waveguide, utilizing Bragg waveguiding in the
ateral direction and total internal reflection in the transverse
irection.

ig. 7. Effective index versus waveguide width: QtW-BRW #1.
olid curve, TE; dashed curve, TM. The horizontal line at neff
2.8566 represents the slab waveguide.
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. DISCUSSION AND SUMMARY
e have derived analytical expressions for the electric

eld in a one-dimensional quarter-wave Bragg reflection
aveguide. These formulas have been confirmed by com-
arison with numerical simulations and provide addi-
ional physical insight into the waveguiding properties. It
as shown that such structures are polarization degener-
te with greater core confinement of the TE mode. This
ack of birefringence suggests that the QtW-BRW shows
reat promise for utilization in polarization-independent
evices. In particular, the efficiency of parametric down-
onversion for generation of entangled photons in a
ype-II (orthogonal polarization) process stands to in-
rease. The analysis has also identified two distinct re-
imes of TM operation, characterized by a reversal in the
ode symmetry. This phenomenon suggests the possibil-

ty of achieving robustly single-polarization devices.
With a first-order expansion, dispersion and tuning

urves about the quarter-wave point have been derived.
he effect of transverse confinement by total internal re-
ection has also been investigated, indicating a lifting of
he degeneracy to favor the TM mode. This introduces the
rospect of a waveguide that supports only the TM polar-
zation, a phenomenon that is difficult to achieve using
IR waveguides. Although the transverse confinement in

ig. 8. Mode intensity, QtW-BRW #1, 3 �m width. (a) TE00, (b) T
gure.
his study was provided by TIR at an interface with air, it
s, of course, possible to provide transverse confinement
hrough a two-dimensional photonic bandgap cladding.
uch work has been done on defect-line waveguides in a

wo-dimensional photonic bandgap structure in which lat-
ral confinement is provided by TIR.20 It is anticipated
hat utilizing Bragg waveguiding in the lateral direction
ill introduce additional freedom in tailoring the disper-

ive properties of the waveguide.

PPENDIX A: PERTURBATION OF THE
ODE CONDITION EQUATION

o estimate such waveguide properties as dispersion and
uning curves, it is necessary to explore the deviation of
he mode dispersion equation from the ideal quarter-wave
ase. This is accomplished by adding a perturbation term
ki to each propagation vector, with subsequent expan-
ion of the resulting equation to first order in the pertur-
ations. The result will be a mode detuning equation, lin-
ar in �ki, that is independent of the source of the
erturbation and whose solution can be rearranged to de-
ermine the waveguide property under consideration.
ere, we outline this procedure for the TE mode only; the
M mode follows a similar analysis. Note that, as the po-

TM00, (d) TM10. The waveguide geometry is superimposed on the
E10, (c)
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arization degeneracy is lifted when the waveguide is
uned away from the quarter-wave condition, the ki be-
ome polarization dependent by Eq. (3). We will omit the

ubscripts for brevity. Polarization subscripts for matrix a

a

T

T
t

w
t
e
(
m

A
T
t
o
C

r
1

R

lements will remain, however, to indicate that their de-
ning equations are unique to a specific polarization.
The perturbed mode dispersion equation (16) is written
s

1

kc + �kc
cot
 �kc + �kc�tc

2 � =
− i

k1 + �k1
� �exp�iKTE�� + ��exp�iKTE���� − �ATE + �ATE� + �BTE + �BTE�

�exp�iKTE�� + ��exp�iKTE���� − �ATE + �ATE� − �BTE + �BTE�� . �A1�
xpanding the left-hand side of Eq. (A1) to first order
bout the nominal quarter-wave condition results in

1

kc + �kc
cot
 �kc + �kc�tc

2 � �
1

kc
�1 −

�kc

kc
	�− �kctc

2 	
�

− �kctc

2kc
, �A2�

nd the right-hand side is expanded as

− i

k1
�1 −

�k1

k1
	
exp�iKTE�� − ATE + BTE

exp�iKTE�� − ATE − BTE
�

	�1 +
��exp�iKTE��� − �ATE + �BTE

exp�iKTE�� − ATE + BTE

−
��exp�iKTE��� − �ATE − �BTE

exp�iKTE�� − ATE − BTE
�

�
− i

k1
���exp�iKTE��� − �ATE + �BTE

exp�iKTE�� − ATE − BTE
� , �A3�

here we have made use of the fact that exp�iKTE��
ATE+BTE=0. Next, we use the perturbed ki to calculate

he transfer-matrix elements by using Eqs. (8),

ÃTE = ATE + �ATE

= exp�i�k1 + �k1�a��cos��k2 + �k2�b� +
i

2�k2 + �k2

k1 + �k1

+
k1 + �k1

k2 + �k2
	sin��k2 + �k2�b��

� i�1 + i�k1a�
− �k2b +
i

2�k2

k1
+

k1

k2
	

	�1 +
2k2�k2 + 2k1�k1

k2
2 + k1

2 −
�k1

k1
−

�k2

k2
	� , �A4�

hich, when compared with Eqs. (25), results in

�ATE = �k1
 1

2k1
�k2

k1
+

k1

k2
	 −

1

k2
− i� �

4k1
	�k2

k1
+

k1

k2
	�

+ �k2
 1

2k2
�k2

k1
+

k1

k2
	 −

1

k1
− i� �

2k2
	� . �A5�

n Eq. (A5), the relation (24) has been used. A similar
nalysis gives
�BTE = �k1
 − 1

2k1
�k2

k1
−

k1

k2
	 −

1

k2
− i� �

4k1
	�k2

k1
−

k1

k2
	�

+ �k2
 − 1

2k2
�k2

k1
−

k1

k2
	 +

1

k1
� , �A6�

nd it is easily shown that

�DTE = �ATE
* , �CTE = �BTE

* . �A7�

his allows us to introduce a perturbation matrix

�TE = 
�ATE �BTE

�BTE
* �ATE

* � . �A8�

he matrix eigenvalue now contains a perturbation term
hat is easily calculated as21

��exp�iKTE��� = �uTE
+ ,�TEuTE

+ �

=
1

2
�− 1 1�
�ATE �BTE

�BTE
* �ATE

* ��− 1

1 	
= Re��ATE − �BTE�, �A9�

here uTE
+ is the normalized eigenvector of the unper-

urbed transfer matrix corresponding to eigenvalue
xp�iKTE��, given by Eqs. (33). With Eqs. (25), (28), (A5),
A6), and (A9), expressions (A2) and (A3) reduce to the
ode detuning equation

�kc =
�kc��k1 + �k2�

tc�k2
2 − k1

2�
. �A10�

CKNOWLEDGMENTS
his work has been supported by the Department of Elec-

rical and Computer Engineering at the University of Tor-
nto and the Natural Sciences and Engineering Research
ouncil, Canada.
Brian R. West, the corresponding author, can be

eached at the address on the title page or by phone,
-416-946-8663, or e-mail, brian.west@utoronto.ca.

EFERENCES
1. P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt.

Commun. 19, 427–430 (1976).
2. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic

propagation in periodic stratified media. I. General theory,”
J. Opt. Soc. Am. 67, 428–438 (1977).



1

1

1

1

1

1

1

1

1

1

2

2

1220 J. Opt. Soc. Am. B/Vol. 23, No. 6 /June 2006 B. R. West and A. S. Helmy
3. A. Mizrahi and L. Schachter, “Optical Bragg accelerators,”
Phys. Rev. E 70, 016505 (2004).

4. Z. Zhang, S. G. Tantawi, and R. D. Ruth, “Distributed
grating-assisted coupler for optical all-dielectric electron
accelerator,” Phys. Rev. ST Accel. Beams 8, 071302
(2005).

5. A. S. Helmy and B. R. West, “Phase matching using Bragg
reflector waveguides,” in Proceedings of the 18th Annual
Meeting of the IEEE Lasers and Electro-Optics Society
(IEEE, 2005), pp. 424–425.

6. Y. Sakurai and F. Koyama, “Proposal of tunable hollow
waveguide distributed Bragg reflectors,” Jpn. J. Appl. Phys.
Part 1 43, L631–L633 (2004).

7. E. Simova and I. Golub, “Polarization splitter/combiner in
high index contrast Bragg reflector waveguides,” Opt.
Express 11, 3425–3430 (2003).

8. C. Wächter, F. Lederer, L. Leine, U. Trutschel, and M.
Mann, “Nonlinear Bragg reflection waveguide,” J. Appl.
Phys. 71, 3688–3692 (1992).

9. P. Yeh, Optical Waves in Layered Media (Wiley, 2005).
0. P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.

Sergienko, and Y. Shih, “New high-intensity source of
polarization-entangled photon pairs,” Phys. Rev. Lett. 75,
4337–4341 (1995).

1. S. Esposito, “Universal photonic tunneling time,” Phys.
Rev. E 64, 026609 (2001).

2. Mode Solutions version 1.0, Lumerical Solutions, Inc.,
www.lumerical.com.
3. A. Argyros, “Guided modes and loss in Bragg fibres,” Opt.
Express 10, 1411–1417 (2002).

4. J. Chilwell and I. Hodgkinson, “Thin-films field-transfer
matrix theory of planar multilayer waveguides and
reflection from prism-loaded waveguides,” J. Opt. Soc. Am.
A 1, 742–753 (1984).

5. P. M. Lambkin and K. A. Shore, “Nonlinear semiconductor
Bragg reflection waveguide structures,” IEEE J. Quantum
Electron. 27, 824–829 (1991).

6. S. Adachi, “GaAs, AlAs, and AlxGa1−xAs material
parameters for use in research and device applications,” J.
Appl. Phys. 58, R1–R29 (1985).

7. J. J. Sakurai, Modern Quantum Mechanics, rev. ed.
(Addison-Wesley, 1994).

8. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J.
Opt. Soc. Am. 68, 1196–1201 (1978).

9. C. M. Kim and R. V. Ramaswamy, “Modeling of graded-
index channel waveguides using nonuniform finite-
difference method,” J. Lightwave Technol. 7, 1581–1589
(1989).

0. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K.
Asakawa, and K. Inoue, “Low propagation loss of
0.76 dB/mm in GaAs-based single-line-defect two-
dimensional photonic crystal slab waveguides up to 1 cm in
length,” Opt. Express 12, 1090–1096 (2004).

1. A. S. Deif, Advanced Matrix Theory for Scientists and
Engineers (Routledge, 1987).


